Appendix F: Corridor Existing Conditions

Physical conditions occurring within the Highway 9 corridor are quite variable and complex. This Appendix provides descriptions and maps of some of the typical conditions along the corridor that serve to support some modifications, as well as demonstrate some of the constraints or challenges in implementing many projects and concepts that have been identified by the community.

F1. Existing Roadway Conditions
Existing Conditions Maps show peak hour traffic volumes, bus stop locations as of 2017, crosswalk locations, and traffic flow level of service (LOS) are included in Figure F1.
Figure F1 Vehicular Conditions Maps

Legend
- Bus stop
- Crosswalk
- Bridge/Culvert

PM peak Hourly Traffic volume
- 48
- 49 - 441
- 442 - 763
- 7634 - 1003
- 1003 - 1170

A-E indicates PM peak hour LOS (per Caltrans)
Appendix F: Corridor Existing Conditions
Appendix F: Corridor Existing Conditions
Highway 9 – San Lorenzo Valley Complete Streets Corridor Plan

Legend
- Bus Rt 35, 30 min headway
- Crosswalk
- Bridge/Culvert

PM peak Hourly Traffic volume
- 48
- 49 - 441
- 442 - 763
- 7634 - 1003
- 1003 - 1170

A-E indicates PM peak hour LOS (per Caltrans)

Appendix F: Corridor Existing Conditions
F2. Collisions
There have been a number of significant collisions in the past decade in the SLV. Leading causes of injury and fatal collisions 2013-2017 involved unsafe speed or improper turning. Residents are justly concerned about speeding on roadways throughout the SLV, especially near schools, residential and commercial areas. The narrow curving right-of-way and close proximity to buildings, fences, and trees meant nearly 40% of all collisions 2013-2017 were “hit object” collisions, rather than a collision between two vehicles. Impaired driving from alcohol or drugs is also a significant challenge. Figure F2 shows all collisions 2013-2017, separating those involving a bicycle or pedestrian (F2A) from those that do not (vehicle on vehicle, hit fixed object, etc.) (F2B). California Highway Patrol (CHP) is responsible for traffic enforcement through the SLV, though officers are responsible for covering very large areas.
Figure F2A Bicycle and Pedestrian Collisions Map
Pedestrian and bicycle involved collisions resulting in injuries or fatalities, 2013 - 2017

Collision data source: Statewide Integrated Traffic Records System

Appendix F: Corridor Existing Conditions
Figure F2B Vehicle Collisions Map

Motor vehicle collisions resulting in injuries or fatalities, 2013 - 2017

Those involving pedestrians and bicycles shown on separate map

Appendix F: Corridor Existing Conditions
F3. Typical Existing Conditions for Bicycle and Pedestrian Access

A Complete Streets study typically looks to better balance accommodation of motorists and accommodation of bicyclists and pedestrians. For the purpose of this study the following categorizes existing conditions along the routes and constraints for providing more space for bicyclists and pedestrians. Similar to traffic level-of-service descriptions, they are organized A to F, with “A” representing areas where access space or facilities are decent (though perhaps not ideal), and “F” being the most constrained condition for adding bicycle or pedestrian improvements or other improvements that require additional space (i.e. turn lanes or bus stops). These condition categories are described in the following pages. Figure F3 maps where these varying conditions exist through the corridor.

Table 1: Key for Typical Existing Conditions

<table>
<thead>
<tr>
<th>Letter</th>
<th>Color on Maps</th>
<th>Represents</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>Areas with adequate existing bike and pedestrian access</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Areas with relatively level topography, few barriers to creating/improving bike and pedestrian access</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>Areas with moderate topography, but significant adjacent trees, and/or private use and improvement barriers</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>Areas with steep topography immediately adjacent to the roadway</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>Area with steep topography immediately adjacent to the roadway and adjacent trees, and/or private use and improvement barriers</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>Areas with major retaining walls close to the roadway</td>
</tr>
</tbody>
</table>
A – Areas with existing bike and pedestrian access

These areas have at least 8’ shoulders with adjacent unobstructed area for pedestrians, or shoulders wide enough to be designated as Class 2 bike lanes (4’ to 6’) and existing sidewalk or paved pedestrian path. Some barriers such as utility poles, trees, signs, and driveways would have to be addressed to complete or formalize these improvements. This condition often occurs in or near the center of the business districts.
B – Areas with relatively level topography, few barriers to creating/improving bike and pedestrian access

Typically, on at least one side, there is room to widen the highway and/or construct a separate pedestrian path with some minor grading and drainage structure addition/improvement, though some barriers such as utility poles, drainage ditches, trees, and driveways would have to be addressed. This condition generally occurs on the outskirts of the towns.
C – Areas with moderate topography, but significant adjacent trees, and/or private use and improvement barriers

This type includes residential or commercial areas where the structures, parking, and improvements have been established close to the roadway, or State Park or other areas where mature trees (typically redwoods) are adjacent to the roadway, so that widening the highway, providing a separate Class 1 trail, or providing a sidewalk or path would require redesign or re-arrangement of the site. A common condition is conflict with residential, or more commonly commercial parking that uses the highway right-of-way for head-in and pull-out.
D – Areas with steep topography immediately adjacent to the roadway

This condition is typical of many areas between the towns and much of the northern study area. There is no flat ground upon which to widen or create space for bikes and pedestrians. Retaining walls or some type of cantilevered structure would be necessary to create the needed room.

South of Highland Park, looking north

View south to High School Entrance
E – Area with steep topography immediately adjacent to the roadway and adjacent trees, and/or private use and improvement barriers

This condition occurs north of Graham Hill Road and in other locations in the corridor. Here there are significant construction requirements, such as new or added retaining walls, plus significant potential impact on adjacent structures, trees, driveway access, etc. that would constrain widening or adding pedestrian facilities.

Hwy 9 north of Graham Hill Road, looking north

Hwy 9 north of Graham Hill Road, looking south
F – Areas with major retaining walls close to the roadway

In these areas the highway surface is many feet above or below the top of the adjacent slope. Creation of additional room to widen or add a trail would require the complete reconstruction of the wall or addition of a parallel structure to support the trail.
Appendix F: Corridor Existing Conditions

Highway 9 – San Lorenzo Valley Complete Streets Corridor Plan
Appendix F: Corridor Existing Conditions
Appendix F: Corridor Existing Conditions
Appendix F: Corridor Existing Conditions

Condition

- Green A
- Light Green B
- Yellow C
- Orange D
- Red E
- Gray F

- Bus Rt 35, 30 min headway
- Crosswalk

Kimley-Horn

1,000'

Sheet 10 / 12
Appendix F: Corridor Existing Conditions

Highway 9 – San Lorenzo Valley Complete Streets Corridor Plan

1,000'

Sheet 12 / 12