ENERGY ANALYSIS REPORT

State Route 1 Auxiliary Lanes and Bus-on-Shoulder

 Improvements - Freedom Boulevard to State Park Drive - and Coastal Rail Trail Segment 12 Project

SANTA CRUZ COUNTY

District 5-SCR-1-PM 8.1/10.7
[E.A. 05-0C734]

Prepared by

Terry A. Hayes Associates Inc.
3535 Hayden Avenue, Suite 350
Culver City, CA 90232

July 2022

This document contains blank pages to accommodate two-sided printing.

ENERGY ANALYSIS REPORT

SANTA CRUZ COUNTY, CALIFORNIA
CALIFORNIA DEPARTMENT OF TRANSPORTATION DISTRICT 5

E.A. 05-0C734

EFIS 0520000083

Rajvi Koradia, Transportation Engineer, Civil
Caltrans, District 5, Environmental Engineering

Sam Silverman, Senior Associate
Terry A. Hayes Associates Inc.
3535 Hayden Avenue, Suite 350
Culver City, CA 90232
Date: July 26, 2022

For individuals with sensory disabilities, this document can be made available in Braille, in large print, on audiocassette, or on computer disk. To obtain a copy in one of these alternate formats, please write to or call Caltrans, Attention: Lara Bertaina, Environmental Branch Chief, Environmental Planning Division, California Department of Transportation, District 5, 50 Higuera Street, San Luis Obispo, CA 93401; phone 1-805-542-4610 (Voice), or use the California Relay Service 1-800-735-2929 (TTY), 1-800-735-2929 (Voice), or 711.

Contents

List of Appendices iv
List of Tables v
List of Figures vi
Acronyms and Abbreviations vii

1. Introduction1
2. Project Description. 1
2.1 Location and Background 1
2.2 Purpose and Need 1
2.3 No Build Alternative 1
2.3.1 Build Alternative 5
2.4 Construction Activities and Schedule 7
3. Affected Environment 9
3.1 Regulations 9
3.1.1 Federal 9
3.1.2 State 10
3.1.3 Regional 10
3.2 Existing Setting 11
3.2.1 Federal 11
3.2.2 State 12
3.2.3 Regional 13
3.2.4 Project Site 14
4. Study Methods 15
4.1 Direct Energy (Mobile Sources) 15
4.2 Direct Energy (Construction) 15
4.3 Indirect Energy (Maintenance) 16
5. Environmental Consequences 17
5.1 Direct Energy 17
5.1.1 Mobile Sources 17
5.1.2 Construction 18
5.2 Indirect Energy (Maintenance) 18
5.3 Avoidance, Minimization, and/or Mitigation Measures 19
6. References. 20

List of Appendices

Appendix A Summary of Forecast Travel Activities
Appendix B Operational Fuels Consumption
Appendix Construction Fuels Consumption

List of Tables

Table 2.1. Summary of Project Operational Performance for Northbound No BuildAlternative Traffic Conditions by Time Period3Table 2.2. Summary of Project Operational Performance for Southbound No Build Alternative Traffic Conditions by Time Period 4
Table 2.3. Summary of Project Operational Performance for Northbound Build Alternative Traffic Conditions by Time Period 6
Table 2.4. Summary of Project Operational Performance for Southbound Build Alternative Traffic Conditions by Time Period 7
Table 2.5. Construction Activities and Schedule. 8
Table 3.1. Summary of Existing Traffic Conditions 14
Table 5.1. Annual VMT, Vehicle Percentages, and Operational Fuel Consumption. 17
Table 5.2. Construction Fuel Consumption. 18

List of Figures

Figure 1.1. Map of the Project Location2

Figure 3.1. California Annual Gasoline Consumption and Vehicle Miles Traveled, 1998-2017.13

Acronyms and Abbreviations

Term	Definition
AMBAG	Association of Monterey Bay Area Governments
BOS	Bus on Shoulder
CAFE	Corporate Average Fuel Economy
Caltrans	California Department of Transportation
CARB	California Air Resources Board
CEQA	California Environmental Quality Act
CO2	Carbon Dioxide
EA	Environmental Assessment
EIR	Environmental Impact Report
FHWA	Federal Highway Administration
FTA	Federal Transit Administration
GHG	Greenhouse Gas
HOV	High-Occupancy Vehicle
LED	Light-Emitting Diode
LOS	Level of Service
mph	Miles per Hour
MSEI	Mobile Source Émissions Inventory
MTP	Metropolitan Transportation Plan
NEPA	National Environmental Policy Act
PM	Post Mile
SCCRTC	Santa Cruz County Regional Transportation Commission
SCS	Sustainable Communities Strategy
SR	State Route
U.S. EPA	United States Environmental Protection Agency
VHT	Vehicle Hours Traveled
VMT	Vehicle Miles Traveled
CCR	California Code of Regulations
CEC	California Energy Commission

1. Introduction

The California Department of Transportation (Caltrans) in cooperation with the Santa Cruz County Regional Transportation Commission (SCCRTC), the County of Santa Cruz, proposes to widen Highway 1 (State Route 1 [SR1]) to include auxiliary lanes, accommodate bus-on-shoulder (BOS) operations between the Freedom Boulevard and State Park Drive interchanges, and construct Coastal Rail Trail Segment 12. The project is subject to federal and State environmental review requirements. The project limits extend from the State Park Drive interchange on SR 1, at post mile (PM) 8.1, to the Freedom Boulevard interchange (PM 10.7) within an unincorporated area of the County. Caltrans is the lead agency under the National Environmental Policy Act (NEPA) and California Environmental Quality Act (CEQA).

The purpose of the Energy Analysis Report is to identify energy requirements for construction and operation of the Build Alternative. Every activity results in some kind of energy consumption. Energy is either used for work (kinetic energy) or stored (potential energy). Kinetic energy is the amount of work necessary to move an object. In transportation, thermal energy from fuel combustion is converted into kinetic energy to propel vehicles. Electrical energy is used to power facilities such as highway lighting and converted to heat and power for buildings.

Transportation energy is generally described in terms of direct and indirect energy. In the context of transportation, direct energy involves all energy consumed by vehicle propulsion (e.g., automobiles, trains, airplanes). The one-time energy expenditure involved in constructing a project is also considered direct energy. Fuel consumed by equipment required for periodic maintenance of the physical system associated with a project is considered indirect energy. The use of highway maintenance equipment and landscaping involve indirect consumption of energy after a facility is built. The Energy Analysis Report also discusses consistency with federal, state, and local energy conservation plans.

The Energy Analysis Report is organized as follows:

- Chapter 1 Introduction
- Chapter 2 Project Description
- Chapter 3 Affected Environment
- Chapter 4 Study Methods
- Chapter 5 Environmental Consequences
- Chapter 6 References

Figure 1.1. Map of the Project Location

2. Project Description

2.1 Location and Background

SR 1 is a primary route connecting in the southern and central areas of Santa Cruz County and is the only continuous commuter route linking Watsonville, Capitola, Aptos, Cabrillo College, Santa Cruz, and the University of California Santa Cruz. SR 1 is also a southern terminus for SR 9 and SR 17, which bring heavy tourist traffic to coastal destinations in Santa Cruz and Monterey counties.

Improvements in the project area were addressed previously in a combined Tier I/Tier II Environmental Impact Report/Environmental Assessment (EIR/EA), which was adopted in December 2018. The Tier I component, referred to as the corridor improvement project, proposed approximately 8.9 miles of new high-occupancy vehicle (HOV) lanes, HOV on-ramp bypass lanes, auxiliary lanes, pedestrian and bicycle overcrossings, and reconstructed interchanges. It was recognized that the Tier I project would likely be implemented in phases. The Tier II component therefore analyzed the first phase of the corridor improvement project, which included auxiliary lanes between $41^{\text {st }}$ Avenue and Soquel Avenue/Drive among other improvements within the Tier II project limits.

The project is the second phase of the improvements described in the Tier I EIR/EA. The SCCRTC developed an implementation plan for building out the Tier I corridor improvement project based on traffic operation criteria to ensure that each phase identified as a future construction-level project would have independent utility because it would individually provide a benefit to traffic operations on SR 1. The project has independent utility and logical termini because it would resolve a congestion problem on SR 1 between Freedom Boulevard and State Park Drive.

2.2 Purpose and Need

The purpose of the project is to do the following.

- Reduce congestion along SR 1 through the project limits.
- Enhance bicycle and pedestrian connectivity along Segment 12 of the Coastal Rail Trail.
- Promote the use of alternative transportation modes to increase transportation system capacity and reliability.
- Provide Coastal Rail Trail access across SR 1 at the two railroad bridges.

This project is needed for the following reasons.

- Several bottlenecks along SR 1 in the southbound and northbound directions cause congestion during peak hours, significantly delaying drivers.
- Cut-through traffic, or traffic on local streets, is increasing because drivers are seeking to avoid congestion on SR 1.
- There are limited opportunities for pedestrians and bicyclists to safely cross SR 1 and navigate the project corridor, even though portions of the project area are designated as regional bicycle routes.

2.3 No Build Alternative

The No Build (No Action) Alternative consists of those transportation projects that are already planned for construction by or before the horizon year 2045. Consequently, the No Build Alternative represents future travel conditions in the study area without the project and is the baseline against which the other Build Alternatives will be assessed to meet NEPA requirements.

Under the No-Build Alternative, there would be no construction of auxiliary lanes or BOS features on SR 1 within the project area, and Coastal Rail Trail Segment 12 would not be constructed. The existing transportation facilities within the project area would remain unchanged. The No-Build Alternative assumes the construction of other planned and programmed projects in the region, including other auxiliary lanes projects on SR 1 and other segments of the Coastal Rail Trail.

Average weekday daily mainline traffic in the SR 1 northbound and southbound directions under the No Build conditions and within the project limits is expected to grow between the existing year (2019) and the opening year (2025) by 4.2 percent and 5.7 percent, respectively. Average weekday daily mainline traffic in the SR 1 northbound and southbound directions under the No Build conditions and within the project limits is expected to grow between the existing year (2019) and the horizon year (2045) by 17.4 percent and 20.9 percent, respectively.

The peak spreading in the future years (2025 and 2045) would become more common (that is, over a greater number of hours in a day) than in the existing year (2019). As a result, traffic volume growth in the AM and PM peak periods are lower compared to the daily total traffic volume growth. Table 21 shows the No Build Alternative vehicle northbound operational performance summary in terms of total model volumes (in vehicles/hour) and truck model volumes, VMT, VHT, average speed (mph), delay (minutes/vehicle) and LOS. Table 2-2 shows the No Build Alternative vehicle southbound operational performance summary for the same scenarios and performance measure as Table 2-1. Due to lack of detailed vehicle classification counts, an average truck percentage of 4 percent was assumed on all roadway segments and under all scenarios.

Table 2.1. Summary of Project Operational Performance for Northbound No Build Alternative Traffic Conditions by Time Period

Direction of Movement \& Time Period	Performance Measure	Analysis Duration	Existing (2019) No Build Alternative	Opening Year (2025) No Build Alternative	Horizon Year (2045) No Build Alternative
SR 1 NB AM Peak Period = (6AM-12PM, Peak Hour = 7AM-8AM)	Avg. Hourly Volume (vehicles/hr.)	Peak Hour	3,270	3,428	3,288
		Peak Period	3,142	3,251	3,071
	Hourly Truck Volume (trucks/hr.)	Peak Hour	131	137	132
		Peak Period	126	130	123
	Daily VMT (vehicle miles traveled)	Peak Hour	16,840	17,653	17,201
		Peak Period	97,070	100,445	94,311
	Daily VHT (vehicle hours traveled)	Peak Hour	590	555	744
		Peak Period	2,747	3,332	6,017
	Segment LOS	Peak Hour	F	F	F
		Peak Period	E	F	F
	Avg. Segment Speed (mph)	Peak Hour	29	32	23
		Peak Period	35	30	16
	Avg. Delay (min/veh)	Peak Hour	5.8	4.7	8.4
		Peak Period	3.8	5.3	14.7
SR 1 NB PM (Peak Period $=$ 2PM-8PM, Peak Hour = 4PM-5PM)	Avg. Hourly Volume (vehicles/hr.)	Peak Hour	2,822	2,979	3,400
		Peak Period	2,400	2,537	2,905
	Hourly Truck Volume (trucks/hr.)	Peak Hour	113	119	136
		Peak Period	96	101	116
	Daily VMT (vehicle miles traveled)	Peak Hour	14,535	15,341	17,508
		Peak Period	74,149	78,396	89,753
	Daily VHT (vehicle hours traveled)	Peak Hour	235	249	290
		Peak Period	1,200	1,270	1,487
	Segment LOS	Peak Hour	C	C	C
		Peak Period	C	C	C
	Avg. Segment Speed (mph)	Peak Hour	62	62	60
		Peak Period	62	62	60
	Avg. Delay (min/veh)	Peak Hour	0.0	0.0	0.1
		Peak Period	0.0	0.0	0.1

Source: CDM Smith, 2020.

Table 2.2. Summary of Project Operational Performance for Southbound No Build Alternative Traffic Conditions by Time Period

Direction of Movement \& Time Period	Perf. Measure	Analysis Duration	Existing (2019) No Build Alternative	Opening Year (2025) No Build Alternative	Horizon Year (2045) No Build Alternative
SR 1 SB AM Peak Period = (6AM-12PM, Peak Hour = 7AM-8AM)	Avg. Hourly Volume (vehicles/hr.)	Peak Hour	3,042	3,154	3,614
		Peak Period	2,873	3,024	3,458
	Hourly Truck Volume (trucks/hr.)	Peak Hour	122	126	145
		Peak Period	115	121	138
	Daily VMT (vehicle miles traveled)	Peak Hour	28,896	29,965	34,330
		Peak Period	163,737	172,394	197,101
	Daily VHT (vehicle hours traveled)	Peak Hour	486	497	625
		Peak Period	2,738	2,839	3,378
	Segment LOS	Peak Hour	C	C	D
		Peak Period	C	C	C
	Avg. Segment Speed (mph)	Peak Hour	59	60	55
		Peak Period	60	61	58
	Avg. Delay (min/veh)	Peak Hour	0.2	0.1	1.0
		Peak Period	0.2	0.0	0.4
SR 1 SB PM (Peak Period $=$ 2PM-8PM, Peak Hour = 4PM-5PM)	Avg. Hourly Volume (vehicles/hr.)	Peak Hour	3,470	3,526	3,269
		Peak Period	3,391	3,533	3,635
	Hourly Truck Volume (trucks/hr.)	Peak Hour	139	141	131
		Peak Period	136	141	145
	Daily VMT (vehicle miles traveled)	Peak Hour	32,962	33,498	31,056
		Peak Period	193,281	201,373	207,207
	Daily VHT (vehicle hours traveled)	Peak Hour	1,419	1,520	2,274
		Peak Period	6,045	6,953	10,789
	Segment LOS	Peak Hour	F	F	F
		Peak Period	F	F	F
	Avg. Segment Speed (mph)	Peak Hour	23	22	14
		Peak Period	32	29	19
	Avg. Delay (min/veh)	Peak Hour	15.2	16.5	32.4
		Peak Period	8.5	10.3	20.3

Source: CDM Smith, 2020.

2.3.1 Build Alternative

There is one Build Alternative and a No Build Alternative being considered for this project. The assessment of alternatives considers the opening year (2025) and the 20-year design/horizon year (2045).

2.3.1.1 Build Alternative

The Build Alternative proposes to improve operations on SR 1 from State Park Drive to Freedom Boulevard by adding auxiliary lanes and bus on shoulder (BOS) features in the northbound and southbound directions, replacing the SR 1 bridge over Aptos Creek and Spreckels Drive, replacing the two railroad bridges over SR 1, and constructing a bicycle and pedestrian trail along a segment of the Santa Cruz Branch Line railroad right of way. The proposed auxiliary lanes and BOS improvements would extend approximately 2.6 miles along SR 1 in unincorporated Santa Cruz County between the Freedom Boulevard interchange and the State Park Drive interchange, from PM 8.1 to PM 10.7. The proposed Coastal Rail Trail Segment 12 would extend approximately 1.14 miles along the Santa Cruz Branch Line railroad, between Rio Del Mar Boulevard and State Park Drive. The Santa Cruz Branch Line railroad corridor is an active freight line and is owned by the SCCRTC.

The auxiliary lanes would connect the interchange entrance and exit ramps. This would improve merging and weaving movements between the ramps and improve traffic flow by allowing greater separation between vehicles entering and exiting the freeway from mainline traffic. The proposed BOS improvements would support future bus operations on the shoulders of SR 1 through the interchanges at Freedom Boulevard, Rio Del Mar Boulevard, and State Park Drive during peak congestion periods to achieve transit travel time and reliability improvements. Buses would use the auxiliary lanes between the interchanges.

The limits of Coastal Rail Trail Segment 12 extend from the southern terminus of the trail segment at Sumner Avenue, just of the south of the Rio Del Mar Boulevard underpass, to the northern terminus at State Park Drive. The proposed Coastal Rail Trail Segment 12 includes the construction of a paved bicycle and pedestrian shared use trail within the SCBRL right-of-way on the inland side of the tracks. The trail segment would include a new at-grade trail connection to Sumner Avenue just south of the Rio Del Mar Boulevard underpass where the existing railroad tracks pass under Rio Del Mar Boulevard and a new sidewalk on the north side of Sumner Avenue between the terminus of the trail and the existing sidewalk on Rio Del Mar Boulevard.

The Build Alternative is anticipated to require right of way acquisitions and utility relocations to accommodate highway widening, trail pavement, and bridge work. Temporary construction easements are anticipated to be needed to construct retaining walls, soundwalls, and the bridges. Table 2.3 shows the Build Alternative vehicle northbound operational performance summary in terms of total model volumes (in vehicles/hour) and truck model volumes, VMT, VHT, average speed (mph), delay (minutes/vehicle) and LOS. Table 2-4 shows the Build Alternative vehicle southbound operational performance summary for the same scenarios and performance measure as Table 2-3. Due to lack of detailed vehicle classification counts, an average truck percentage of 4 percent was assumed on all roadway segments and under all scenarios.

Table 2.3. Summary of Project Operational Performance for Northbound Build Alternative Traffic Conditions by Time Period

Direction of Movement \& Time Period	Perf. Measure	Analysis Duration	Existing (2019) Build Alternative	Opening Year (2025) Build Alternative	Horizon Year (2045) Build Alternative
SR 1 NB AM Peak Period = (6AM-12PM, Peak Hour = 7AM-8AM)	Avg. Hourly Volume (vehicles/hr.)	Peak Hour	3,270	3,492	3,288
		Peak Period	3,142	3,255	3,071
	Hourly Truck Volume (trucks/hr.)	Peak Hour	131	140	132
		Peak Period	126	130	123
	Daily VMT (vehicle miles traveled)	Peak Hour	16,843	17,981	16,931
		Peak Period	97,205	100,559	94,880
	Daily VHT (vehicle hours traveled)	Peak Hour	590	575	863
		Peak Period	2,747	3,893	7,121
	Segment LOS	Peak Hour	F	E	F
		Peak Period	E	F	F
	Avg. Segment Speed (mph)	Peak Hour	29	31	20
		Peak Period	35	26	13
	Avg. Delay (min/veh)	Peak Hour	5.8	4.9	10.8
		Peak Period	3.8	7.0	18.2
SR 1 NB PM (Peak Period $=$ 2PM-8PM, Peak Hour = 4PM-5PM)	Avg. Hourly Volume (vehicles/hr.)	Peak Hour	2,822	3,000	3,397
		Peak Period	2,400	2,555	2,902
	Hourly Truck Volume (trucks/hr.)	Peak Hour	113	120	136
		Peak Period	96	102	116
	Daily VMT (vehicle miles traveled)	Peak Hour	14,535	15,447	17,492
		Peak Period	74,149	78,937	89,654
	Daily VHT (vehicle hours traveled)	Peak Hour	235	249	283
		Peak Period	1,200	1,270	1,449
	Segment LOS	Peak Hour	C	C	C
		Peak Period	C	C	C
	Avg. Segment Speed (mph)	Peak Hour	62	62	62
		Peak Period	62	62	62
	Avg. Delay (min/veh)	Peak Hour	0.0	0.0	0.0
		Peak Period	0.0	0.0	0.0

Source: CDM Smith, 2020.

Table 2.4. Summary of Project Operational Performance for Southbound Build Alternative Traffic Conditions by Time Period

Direction of Movement \& Time Period	Perf. Measure	Analysis Duration	Existing (2019) Build Alternative	Opening Year (2025) Build Alternative	Horizon Year (2045) Build Alternative
SR 1 SB AM Peak Period $=$ (6AM-12PM, Peak Hour = 7AM-8AM)	Avg. Hourly Volume (vehicles/hr.)	Peak Hour	3,042	3,241	3,648
		Peak Period	2,873	3,027	3,464
	Hourly Truck Volume (trucks/hr.)	Peak Hour	122	130	146
		Peak Period	115	121	139
	Daily VMT (vehicle miles traveled)	Peak Hour	28,996	30,793	34,660
		Peak Period	164,715	172,559	197,458
	Daily VHT (vehicle hours traveled)	Peak Hour	486	507	592
		Peak Period	2,738	2,835	3,304
	Segment LOS	Peak Hour	C	C	C
		Peak Period	C	C	C
	Avg. Segment Speed (mph)	Peak Hour	59	61	59
		Peak Period	60	61	60
	Avg. Delay (min/veh)	Peak Hour	0.2	0.0	0.4
		Peak Period	0.2	0.0	0.2
SR 1 SB PM (Peak Period $=$ 2PM-8PM, Peak Hour = 4PM-5PM)	Avg. Hourly Volume (vehicles/hr.)	Peak Hour	3,470	3,894	3,927
		Peak Period	3,391	3,581	3,968
	Hourly Truck Volume (trucks/hr.)	Peak Hour	139	156	157
		Peak Period	136	143	159
	Daily VMT (vehicle miles traveled)	Peak Hour	33,554	36,992	37,307
		Peak Period	194,344	204,116	226180
	Daily VHT (vehicle hours traveled)	Peak Hour	1,419	1,520	1,515
		Peak Period	6,045	6,953	7,796
	Segment LOS	Peak Hour	F	F	F
		Peak Period	F	F	F
	Avg. Segment Speed (mph)	Peak Hour	23	22	25
		Peak Period	32	29	29
	Avg. Delay (min/veh)	Peak Hour	15.2	16.5	13.8
		Peak Period	8.5	10.3	10.3

Source: CDM Smith, 2020.

2.4 Construction Activities and Schedule

The construction period is planned to last approximately three years (36 months) beginning in 2025. Because no construction activities are anticipated to last more than five years at any individual site, emissions from construction-related activities are thus considered temporary as defined in 40 Code
of Federal Regulations (CFR) 93.123(c)(5); and are not required to be included in PM hot-spot analyses to meet conformity requirements.

Table 2.5 shows the length of the project construction period is approximately three years (36 months) and milestone completion dates. These dates are estimates for planning purposes and for use in the Energy Report. Temporary construction easements are anticipated to be needed to construct retaining walls, soundwalls, and the bridges.

Table 2.5. Construction Activities and Schedule

Construction Phase	Description/List of Activities	Begin Date	Completion Date
Advertisement and Award of Contract	Procurement	Spring 2024	Winter 2024
Grubbing/Land Clearing	Grubbing/Land Clearing would require soil export volume of 1,500 cubic yards per day. Construction equipment to be utilized during this construction phase includes 4 crawler tractors and 4 excavators.	January 2025	March 2025
Grading/Excavation	Grading/Excavation would require soil export volume of 1,500 cubic yards per day. Construction equipment to be utilized during this construction phase includes 2 cranes, 4 crawler tractors, 6 excavators, 4 graders, 4 rollers, 4 scrapers, and 4 tractors/loaders/backhoes.	$\begin{aligned} & \text { April } \\ & 2025 \end{aligned}$	June 2026
Drainage/Utilities/SubGrade	Drainage/Utilities/Sub-Grade would require soil export volume of 150 cubic yards per day. Construction equipment to be utilized during this construction phase includes 2 excavators, 2 forklifts, 2 generator sets, 2 graders, 2 scrapers, and 2 tractors/loaders/backhoes.	$\begin{aligned} & \text { July } \\ & 2026 \end{aligned}$	June 2027
Paving	Paving would require asphalt import volume of 1,500 cubic yards per day. Construction equipment to be utilized during this construction phase includes 4 paving equipment, 4 rollers, and 4 surfacing equipment.	$\begin{aligned} & \text { July } \\ & 2027 \end{aligned}$	January 2028
End of Construction		-	2028

3. Affected Environment

This section provides background information on state and local energy resources and usage, as well as current federal, state, and local energy regulations, policies, and legislation.

3.1 Regulations

3.1.1 Federal

NEPA (42 U.S. Code Part 4332) requires the identification of all potentially significant impacts on the environment, including impacts on energy resources. Guidance for evaluating energy impacts of transportation projects subject to NEPA is outlined in Federal Highway Administration (FHWA) Technical Advisory 6640.8A (Technical Advisory). The Technical Advisory energy analysis requirement applies to projects for which an Environmental Impact Statement is prepared, although it may also be applied to EAs. The Technical Advisory indicates that documentation should discuss energy requirements for construction and operation, and the overall conservation potential for project alternatives. The relationship of the project alternatives to applicable state or regional energy plan should also be documented. Additional conservation measures, such use of high-occupancy vehicle incentives and other measures to improve traffic flow should also be identified.

Other measures to improve energy efficiency in the transportation sector have been implemented at the federal level. In recent years, the U.S. Environmental Protection Agency (U.S. EPA) and the National Highway Traffic Safety Administration issued Final Rules governing Corporate Average Fuel Economy (CAFE) standards and other improvements to fuel economy to new vehicles. The Energy Independence and Security Act consists of provisions designed to increase energy efficiency and the availability of renewable energy. Key provisions of this Act include:

- The CAFE, which sets a target of 54.5 miles per gallon for the combined fleet of cars and light trucks by model year 2025.
- The Renewable Fuels Standard, which sets a modified standard that starts at 9.0 billion gallons in 2008 and rises to 36 billion gallons by 2022.
- The Energy Efficiency Equipment Standards, which includes a variety of new standards for lighting and for residential and commercial appliance equipment.
- The Repeal of Oil and Gas Tax Incentives, which includes repeal of two tax subsidies in order to offset the estimated cost to implement the CAFE provision.

On September 27, 2019, the U.S. EPA and the National Highway Traffic Safety Administration published the "Safer Affordable Fuel-Efficient Vehicles Rule Part One: One National Program" (84 Code of Federal Regulations Vol. 84, No. 188 p. 51310). The Part One Rule revokes California's authority to set its own greenhouse gas emissions standards and set zero-emission vehicle mandates in California.

3.1.2 State

On December 28, 2018, the Governor's Office of Planning and Research and the California Natural Resources Agency updated the CEQA Guidelines to require that an Environmental Impact Report include an analysis of a project's potential for significant environmental effects resulting from wasteful, inefficient, or unnecessary use of energy; or wasteful use of energy resources (Guidelines § 15126.2(b)). Appendix F, Energy Conservation, of the CEQA Guidelines outlines requirements for the evaluating energy impacts of projects subject to CEQA. The appendix outlines criteria to consider in reviewing potential impacts, and places particular emphasis on avoiding the "inefficient, wasteful, and unnecessary consumption of energy."

The State has passed several bills directing state agencies and entities such as the California Energy Commission (CEC) and the California Public Utilities Commission to implement renewable energy portfolio targets and energy efficiency measures to reduce energy consumption and greenhouse gas emissions. The CEC is the state's primary energy policy and planning agency. Created by legislature in 1974, the CEC has five major responsibilities: (1) forecasting future energy needs and keeping historical energy data, (2) licensing thermal power plants 50 megawatts or larger, (3) promoting energy efficiency through appliance and building standards, (4) developing energy technologies and supporting renewable energy, and (5) planning for and directing the state's response to energy emergencies. Senate Bill 1389 (Chapter 568, Statutes of 2002) requires the CEC to prepare a biennial integrated energy policy report assessing major energy trends and issues facing the state's electricity, natural gas, and transportation fuel sectors. The report also provides policy recommendations to conserve resources, protect the environment, and ensure reliable, secure and diverse energy supplies.

The California Transportation Plan is a statewide, long-range transportation plan to meet future mobility needs. It defines performance-based goals, policies, and strategies to achieve an integrated, multimodal transportation system. The California Transportation Plan addresses how the state will achieve maximum feasible emissions reductions, taking into consideration the use of alternative fuels, new vehicle technology and tailpipe emissions reductions. Caltrans must consult and coordinate with related state agencies, air quality management districts, public transit operators and regional transportation planning agencies.

The California Code of Regulations (CCR) includes vehicle requirements for public transit agencies. Sections 1956.1, 2020, 2023, 2023.1, and 2023.4 of Title 13 of the CCR. The Fleet Rule for Transit Agencies includes stringent exhaust emission standards for new Urban Bus engines and vehicles. The regulation also promotes advanced technologies by providing for zero-emission bus demonstration projects and requiring zero emission bus acquisitions applicable to larger transit agencies.

3.1.3 Regional

The Association of Monterey Bay Area Governments (AMBAG) is the designated Metropolitan Planning Organization for Monterey, Santa Cruz, and San Benito Counties and their respective cities. The 2040 Metropolitan Transportation Plan/Sustainable Communities Strategy (MTP/SCS) includes a comprehensive discussion of regional energy policies and use. AMBAG has taken steps to assess
what regional infrastructure is needed to accommodate more alternative fuel choices across the region. In 2012, AMBAG adopted the Electric Vehicle Infrastructure for the Monterey Bay Area Plan. This plan presents a siting prioritization method to help identify potential charging locations and presents a framework for establishing a robust electric vehicle charging network in the region. The siting analysis in the plan provides guidance to local and regional stakeholders based on potential demand for electric vehicle charging stations.

In 2013, AMBAG and other regional organizations completed the Monterey Bay Plug-In Electric Vehicle Readiness Plan. The goal of this plan is to encourage the mass adoption of plug-in electric vehicles in the region and reduce greenhouse gas emissions by providing a toolbox of recommended approaches for public, private, and non-profit organizations. These tools range from innovative approaches to plug-in electric vehicle marketing and streamlining electric vehicle supply equipment permitting, to guidelines on establishing an electric vehicle fleet. The Readiness Plan identifies specific regional targets for significantly expanding plug-in electric vehicle adoption in the Monterey Bay Area by 2015, 2020 and 2025. AMBAG and our transportation partners continue to work with local jurisdictions and other organizations to implement charging stations and to increase adoption of electric vehicles around the region.

Within the Monterey Bay Area, the 21 local governments are committed to energy efficiency and climate planning and are working in collaboration with other local governments and their communities. It was through this shared vision of maximizing energy as a resource that the AMBAG Energy Watch program was developed in 2006. The AMBAG Energy Watch programs are designed in two major categories. The first category is implementation programs. These programs achieve direct and measurable energy efficient targets through the installation of energy efficiency equipment. These programs have been developed to serve the diverse stakeholders in the region including residents, municipalities, special districts, non-profit organizations, agriculture, school districts and hospitality businesses. The second category of programs is in the area of climate planning support for jurisdictions. The AMBAG Energy Watch program worked collaboratively with staff from each of the 21 AMBAG jurisdictions to complete each jurisdiction's 2005 municipal and community-wide greenhouse gas inventory, as well as their 2009 and 2010 communitywide greenhouse gas inventory updates. This data was used in the creation of a draft community-wide Energy Action Strategy developed for each of the jurisdictions, which in some cases were incorporated into their Climate Action Plans.

3.2 Existing Setting

3.2.1 Federal

Transportation infrastructure in the United States developed during a period of easy access to relatively inexpensive fossil fuels. The shock of an oil shortage in 1973 contributed to an awareness of petroleum as a finite resource that is ever diminishing as petroleum-based fuels are consumed around the world. Combustion of fossil fuels has also been linked to climate change. The dual concerns of potential energy shortages and environmental impacts of climate change have spurred legislative action at the federal and state levels as well as innovation geared toward conservation of
existing fuel supplies, development of renewable fuels, and energy efficiency measures. A notable legislative act was the introduction of federal CAFE standards in 1975 to mandate fuel efficiency improvements in motor vehicles. Energy use in the transportation sector accounted for 29 percent of total U.S. energy use in the year 2017, second only to the industrial sector.

3.2.2 State

In California, the transportation sector accounts for 39 percent of total energy use. California has the highest number of registered motor vehicles among the U.S. states, but in 2013 ranked $41^{\text {st }}$ in vehicle miles traveled per capita and ranked 39th in 2014. California is the second-highest energy consumer in the U.S., which correlates with its status as the country's largest economy and most populous state, estimated at 39.8 million as of 2018 . However, California ranks $48^{\text {th }}$ in total energy consumed per capita.

Energy efficiency efforts in California have dramatically reduced statewide per capita energy consumption relative to historical averages. California's per capita energy use is the third lowest in the nation. This statistic is partially attributable to the State's continuous pursuit of policies to reduce energy consumption, promote renewable energy, and reduce reliance on fossil fuels. California's net taxable gasoline sales in 2016 were below 2002 levels, despite a population growth of at least 15 percent during the same time period. Furthermore, gasoline consumption in the State decreased by approximately 2.2 percent between 2005 and 2017, even as VMT increased by 7.5 percent, from 329 billion in 2005 to 354 billion in 2017. These improvements are due in large part to a more fuelefficient vehicle fleet. Annual trend lines of statewide gasoline consumption and VMT are shown in Figure 3.1.

California's transportation energy consumption has become increasingly efficient due to technological growth, environmental policies, and innovation. Gasoline and diesel represent the largest fraction of fuel consumed by the transportation sector in California. However, it is anticipated that CAFE regulations, renewable fuel uptake, and zero-emission vehicle regulations will gradually displace gasoline-propulsion systems in favor of more energy-efficient systems with lower GHG emissions. As of 2014, renewable fuels represented a growing fraction of transportation energy consumption at 6.2 percent, with ethanol representing 4.5 percent and other renewables representing 1.7 percent of total transportation energy consumption.

Figure 3.1. California Annual Gasoline Consumption and Vehicle Miles Traveled, 1998-2017

3.2.3 Regional

The region's need for gasoline and diesel is projected to decline from about 129 million gallons per day in 2010 to about 112 million gallons per day by 2035. The projected reduction in fuel consumption is due in large part to state fuel efficiency standards for vehicles and state mandated increases in the supply and use of alternative transportation fuels. Electric vehicles in particular are an important alternative to conventional vehicles as they have the potential to reduce greenhouse gas emissions resulting from the consumption of fossil fuels, particularly in a state with a cleaner energy mix.

The U.S. Census Bureau estimates that the Santa Cruz County population was approximately 274,255 in 2019. The existing population is heavily dependent on automobile travel due to the suburban development throughout most of the County. The majority of energy consumed is from transportation fuels. The California Air Resources Board (CARB) Mobile Source Emissions Inventory (MSEI) EMFAC2017 web database estimates that the 2019 annual VMT in Santa Cruz County is approximately $1,977,948,655$ miles.

3.2.4 Project Site

Under CEQA, the baseline for environmental impact analysis consists of the existing conditions (referred to in this document as Baseline) at the time of the Notice of Preparation. The Baseline year has been established as 2019. Emission estimations based on information contained in the Traffic Operations Analysis Report (CDM Smith, 2020). Within the limits of the project, SR 1 currently has two lanes in each direction with multiple on ramps and off ramps.

The existing/baseline project corridor annual VMT is $250,908,760$ with 96 percent non-trucks and 4 percent trucks. This results in an annual fuel consumption of approximately 9,440,052 gallons per year of gasoline and 776,551 gallons per year of diesel fuel. Existing traffic management systems include metered ramps and changeable message boards. Standard Caltrans lighting is provided at on and off-ramps, but there is no existing lighting in between the interchanges. The Build Alternative does not include substantial light replacement or upgrades that would significantly change existing energy use. The existing pavement surface is considered to be in good condition, which contributes to energy efficiencies.

Table 3.1 shows the existing vehicle corridor-wide operational performance conditions (including the freeway mainline segments within the project limits and upstream of the project limits). The data describe traffic conditions corresponding to peak periods and peak hours within those peak periods. The AM peak period is 6:00 AM-12:00 PM and the AM peak hour is 7:00 AM-8:00 AM. The PM peak period is 2:00 PM-8:00 PM and the PM peak hour is 4:00 PM-5:00 PM. Table 3.1 presents the average hourly volumes of total vehicles and trucks during the peak hour and remaining five hours of the peak period, the total daily VMT and VHT during those times, and the corresponding LOS, average speed (mph), and delay (minutes/vehicle). Due to lack of detailed vehicle classification counts, an average truck percentage of 4 percent was assumed on all roadway segments and under all scenarios.

Table 3.1. Summary of Existing Traffic Conditions

Direction of Movement \& Time Period	Analysis Duration	Average Hourly Volume (veh/hr.)	Average Hourly Truck Volume (veh/hr.)	Daily VMT	Daily VHT	LOS	Average Vehicle Speed (mph)	Average Vehicle Delay (min/veh)
SR-1 NB AM Peak Period	Peak Hour	3,270	131	16,840	590	F	29	5.8
	Peak Period	3,142	126	97,070	2,747	E	35	3.8
SR-1 NB PM Peak Period	Peak Hour	2,822	113	14,535	235	C	62	0.0
	Peak Period	2,400	96	74,149	1,200	C	62	0.0
SR-1 SB AM Peak Period	Peak Hour	3,042	122	28,896	486	C	59	0.2
	Peak Period	2,873	115	163,737	2,738	C	60	0.2
SR-1 SB PM Peak Period	Peak Hour	3,470	139	32,962	1,419	F	23	15.2
	Peak Period	3,391	136	193,281	6,045	F	32	8.5

Source: CDM Smith, 2020

4. Study Methods

Congestion relief and capacity-increasing projects affect the ability of a transportation facility to accommodate existing and future traffic demand. This results in changes to direct energy consumption (i.e., fuel usage) by vehicles using the facilities. Congestion relief and capacityincreasing projects require construction, which is a one-time direct energy source that ceases to consume energy once work is complete. Maintenance and landscaping activities would result in long-term indirect energy consumption through the use of equipment required to maintain the facility and associated facilities.

Some projects may also include features such as new or replacement roadway lighting or other features requiring electricity which is an ongoing and permanent source of direct energy consumption. The Build Alternative does not include substantial light replacement or upgrades that would significantly change existing energy use.

4.1 Direct Energy (Mobile Sources)

In the context of transportation, direct energy involves all energy consumed by vehicle propulsion (e.g., automobiles, trains, airplanes). This energy consumption is a function of traffic characteristics such as VMT, speed, vehicle mix, and thermal value of the fuel being used. The procedure for analyzing direct energy consumption by mobile sources is to calculate fuel consumption using CTEMFAC2017. CT-EMFAC2017 is an emissions model developed by Caltrans that calculates projectlevel emissions and fuel consumption using data from the CARB's MSEI EMFAC model. CT-EMFAC produces speed-based consumption factors for diesel fuel and gasoline fuel based on regional location (Santa Cruz County for the project) and vehicle fleet mix (determined to be 4 percent trucks by transportation engineers).

4.2 Direct Energy (Construction)

The one-time energy expenditure involved in constructing a project is also considered direct energy. The procedure for analyzing direct energy consumption from construction activities is to obtain fuel consumption projections in gallons. The Sacramento Metropolitan Air Quality Management District Road Construction Emissions Model was used to estimate air quality and greenhouse gas emissions for the Build Alternative. For this reason, the Road Construction Emissions Model was also used to estimate fuel use. It is acknowledged that the Caltrans Construction Emission Tool can also be used to estimate fuel use. The Caltrans Construction Emission Tool was not used in this analysis to ensure consistency between project impact analyses. It is preferable to break out construction fuel consumption by diesel and gasoline sources, as the carbon content differs between the two types of fuels. Typical gasoline sources are employee commute vehicles (e.g., light duty automobiles and trucks) and smaller construction equipment pieces (e.g., tampers and mowers). Typical diesel sources are off-road construction equipment (e.g., graders, dozers).

The Air Quality Report prepared for the Draft Environmental Document includes a quantification of construction-related carbon dioxide (CO_{2}) emissions from off-road equipment and on-road vehicles using the Road Construction Emissions Model. These emissions were used to estimate construction energy from CO_{2} emission factors derived for the CARB GHG emissions inventory. For gasoline fuel, approximately 19.4 pounds of CO_{2} are generated per gallon combusted, and for diesel fuel approximately 22.5 pounds of CO_{2} are generated per gallon combusted. The CO_{2} emissions output in units of tons per construction phase from gasoline vehicles and diesel vehicles were converted to pounds and divided by the corresponding CO_{2} factor to estimate one-time gasoline and diesel fuel consumption during construction of the project.

Similar to the analysis in the Air Quality Report, the equipment list used to estimate energy use is adequate to construct both the roadway and coastal rail trail components. Less equipment would be needed to individually construct the components thereby generating less energy use than shown below for combined construction activities.

4.3 Indirect Energy (Maintenance)

Maintenance and landscaping activities would result in long-term indirect energy consumption through the use of equipment to maintain the project and associated facilities. Roadway construction projects will require new periodic maintenance, which could result in indirect energy consumption from equipment and vehicles. Generally, these impacts can be discussed qualitatively as attempting to estimate fuel data or greenhouse gas emissions for these activities, the frequency of which is unknown, would be speculative.

5. Environmental Consequences

5.1 Direct Energy

5.1.1 Mobile Sources

Congestion relief and capacity-increasing projects affect the capability of a roadway facility to address existing and future traffic demand. This results in changes to direct energy consumption (i.e., fuel usage) from vehicles using the facility. Another important consideration is that for operation of a project over the long term, newer and more fuel-efficient vehicles will enter the fleet, resulting in an overall lower potential for an increase in energy consumption due to vehicle traffic. Table 5.1 shows that under the Existing/Baseline condition in 2019, annual fuel consumption along the project corridor is approximately $9,440,052$ gallons of gasoline and 776,551 gallons of diesel fuel. With substantial improvements in engine fuel efficiency anticipated, fuel consumption per vehicle mile will decrease in the future.

Table 5.1. Annual VMT, Vehicle Percentages, and Operational Fuel Consumption

Analysis Scenario \& Year	Annual VMT	Regional Fleet Mix (Truck \%)	Annual Fuel Consumption (Gallons)	
			Gasoline	Diesel
Existing Conditions (2019)	250,908,760	4\%	9,440,052	776,551
Opening (2025) No Build Alternative	262,474,270	4\%	8,567,164	776,800
Opening (2025) Build Alternative	264,150,280	4\%	8,679,027	758,503
Design (2045) No Build Alternative	279,217,020	4\%	8,129,385	762,194
Design (2045) Build Alternative	288,391,700	4\%	8,019,654	760,263

In 2025, the baseline project corridor annual VMT under the No Build Alternative would be 262,474,270, with vehicle travel consuming approximately 776,800 gallons of diesel fuel and 8,567,164 gallons of gasoline per year. Implementation of the project would increase regional gasoline consumption by approximately 111,863 gallons per year and would decrease regional diesel fuel consumption by approximately 18,297 gallons per year through the expanded corridor capacity accommodating 1,676,010 additional annual VMT relative to the No Build Alternative condition, as well as reduced congestion. The change in average vehicle speeds affects gasoline vehicles and diesel vehicles to different degrees and fewer diesel vehicles are expected in future years, which explains the increase for gasoline consumption and the decrease for diesel consumption. The MSEI estimates that Santa Cruz County on-road vehicle travel will consume approximately $68,919,268$ gallons of gasoline and $9,693,575$ gallons of diesel fuel in 2025. The additional fuel consumption spurred by the Project would represent an increase of approximately 0.2 percent for countywide gasoline consumption and a decrease of 0.2 percent for countywide diesel consumption.

By 2045, implementation of the project would decrease annual gasoline and diesel fuel consumption by approximately 109,732 gallons per year and 1,932 gallons per year, respectively, relative to the No Project condition. The MSEI estimates that Santa Cruz County vehicle travel will consume approximately $54,803,966$ gallons of gasoline and $7,678,675$ gallons of diesel fuel in 2045. The reduction in annual fuel consumption spurred by the Project would represent decreases of approximately 0.2 percent for countywide gasoline consumption and 0.03 percent for countywide diesel consumption in the design year of 2045.

5.1.2 Construction

Construction energy effects involve the one-time, non-recoverable energy costs associated with construction of roadways and structures. Site preparation and roadway construction typically involves clearing, cut-and-fill activities, grading, removing or improving existing roadways, building bridges, and paving roadway surfaces. Construction-related effects on energy from most highway projects would be greatest during the site preparation and concrete paving phases because the excavation, handling, and transport of materials requires equipment and truck fuels.

The fuel consumption was estimated from the equipment and vehicles that would be employed in construction activities. Diesel engines are installed in heavy-duty off-road construction equipment and on-road haul trucks. Gasoline engines are typically found in passenger vehicles that would be used for construction worker daily commutes. Table 5.2 presents the direct, one-time expenditure of fuel consumption associated with construction activities, including both the roadway and coastal rail trail components. Construction would require approximately $377,602.8$ gallons of diesel and 23,320.2 gallons of gasoline over a three-year period. Annual average consumption of petroleum fuels during construction activities would be approximately $125,867.6$ gallons of diesel fuel and 7,773.4 gallons of gasoline per year.

Table 5.2. Construction Fuel Consumption

Construction Phase	Duration (Months)	Fuel Consumption (gallons)	
		Diesel	Gasoline
Grubbing/Land Clearing	3.6	47,598	1,295
Grading/Excavation	14.4	214,518	11,487
Drainage/Utilities/Sub-Grade	12.6	54,727	7,174
Paving	5.4	57,987	2,572
Total	36.0	374,829	$\mathbf{2 2 , 5 2 8}$

5.2 Indirect Energy (Maintenance)

Maintenance comprises energy for the day-to-day upkeep of equipment and systems, as well as the energy embedded in any replacement equipment, materials, and supplies. The energy needed to maintain the Build Alternative improvements would not be measurably greater than the energy used
to maintain the existing facility within the project limits. For example, operations would not require Caltrans to purchase additional maintenance vehicles.

5.3 Avoidance, Minimization, and/or Mitigation Measures

The following measures are recommended to reduce energy use.

- Landscaping reduces surface warming and, through photosynthesis, decreases carbon dioxide. The final design plans shall provide landscaping where necessary within the corridor to provide aesthetic treatment, replacement planting, or mitigation planting.
- The final design plans shall incorporate the use of energy-efficient lighting, such as lightemitting diode (LED) traffic signals, to the extent feasible. LED bulbs cost $\$ 60$ to $\$ 70$ each but last 5 to 6 years, compared to the 1 -year average lifespan of the incandescent bulbs previously used. The LED bulbs themselves consume ten percent of the electricity of traditional lights.
- The construction contractor shall comply with Caltrans Standard Specification Provisions that restrict idling time for lane closure during construction to ten minutes in each direction. In addition, the construction contractor must comply with Title 13, CCR Section 2449(d)(3), which was adopted by the California Air Resources Board on June 15, 2008. That regulation restricts idling of construction vehicles to no longer than five consecutive minutes.
- The Build Alternative shall incorporate the following Best Available Control Technologies related to energy use:
- Use cement blended with the maximum feasible amount of flash or other materials (i.e., limestone);
- Recycle construction materials;
- Use lighter-colored pavement where feasible to increase albedo;
- Use recycled water or grey water for fugitive dust control;
- Employ energy- and fuel-efficient vehicles and equipment, zero- and/or near-zero emission technologies; and
- Encourage ride-sharing and carpooling for construction crews.

6. References

Association of Monterey Bay Area Governments (2018) 2040 Metropolitan Transportation Plan/Sustainable Communities Strategy.

California Air Resources Board (2020) CT-EMFAC2017, Version 1.0.2
Caltrans (2018) 2017 Traffic Volumes: Route I, Available: https://dot.ca.gov/programs/traffic-
CDM Smith (September 2020) Highway 1 Auxiliary Lanes and Bus-on-Shoulder Improvements Freedom Boulevard to State Park Drive - and Coastal Rail Trail Segment 12 Project Traffic Forecast Report. Report submitted to Santa Cruz County Regional Transportation Commission (RTC) and Caltrans Distrct 5.

Sacramento Metropolitan Air Quality Management District (2020) Road Construction Emissions Model, Version 9.0.
U.S. Census Bureau (2019) American Community Survey (ACS) 5-Year Estimates 2014-2018. February. Available at https://data.census.gov/cedsci/.

Appendix A

Summary of Forecast Traffic Activities

Daily Vehicle Miles Traveled (VMT)

VMT No Build vs. Build Alternative				
	2019	2025	2045	
Northbound				
No Project	218,034	227,226	256,571	
Build Alternative	219,477	230,768	259,226	
Percent Change	0.7%	1.6%	1.0%	
Southbound				
No Project	211,031	221,102	233,908	
Build Alternative	212,240	224,195	245,529	
Percent Change	0.6%	1.4%	5.0%	

Year	Alternative	NB AM Period	NB PM Period	SB AM Period	SB PM Period
2019	No Build	86,523	67,637	73,667	79,154
	Interim Build	87,067	68,096	74,182	79,392
	Build	87,033	68,096	74,182	79,392
	No Build	87,677	70,493	77,808	82,938
	Interim Build	87,756	71,153	78,272	84,209
	Build	87,727	71,669	78,896	84,163
2045	No Build	86,835	82,121	84,312	86,603
	Interim Build	86,529	82,864	89,076	90,103
	Build	86,548	82,980	89,188	90,092

Source: VMT within Project Limits calculated from FREQ output: (Sum of (average hourly volume during the peak period * Distance for each segment)) * Number of hours during the peak period

Year	Alternative	Direction	AM Period	PM Period	Daily	Factor
2019	No Build	Northbound	21,760	16,350	53,900	1.4
		Southbound	17,700	19,160	50,900	1.4
	Build Alternative	Northbound	21,910	16,470	54,300	1.4
		Southbound	17,830	19,290	51,300	1.4
2025	No Build	Northbound	22,130	17,060	56,300	1.4
		Southbound	18,650	20,100	53,300	1.4
	Build Alternative	Northbound	22,100	17,340	57,100	1.4
		Southbound	18,940	20,480	54,200	1.4
2045	No Build	Northbound	21,840	19,910	63,400	1.5
		Southbound	21,180	23,100	60,600	1.4
	Build Alternative	Northbound	21,800	20,120	64,100	1.5
		Southbound	21,340	23,420	61,300	1.4

Source: Developed Volumes

Performance Measure	Units	Time Period	Year 2019 No Build Alternative			
			Northbound AM	Northbound PM	Southbound AM	Southbound PM
Average Travel Time	Minutes per Vehicle	Peak Hour	6.1	4.0	4.2	7.4
		Peak Period	5.2	4.0	4.1	5.3
Average Speed	Miles per Hour	Peak Hour	40	62	59	34
		Peak Period	47	61	60	47
Average Travel Delay	Minutes per Vehicle	Peak Hour	2.2	0.0	0.2	3.4
		Peak Period	1.2	0.0	0.1	1.3
Number of Vehicle Trips (vehicle	Vehicles per Hour	Peak Hour	3,944	3,058	3,104	3,638
		Peak Period	3,693	2,766	2,963	3,322
Number of Person Trips (person	Persons per Hour	Peak Hour	4,457	3,792	3,600	4,293
		Peak Period	4,173	3,430	3,437	3,920
Freeway Travel Time (VHT)	VehicleHours	Peak Hour	404	202	216	448
		Peak Period	1,833	1,103	1,227	1,696
Travel Distance (VMT)	Vehicle-Miles	Peak Hour	16,072	12,461	12,862	15,075
		Peak Period	86,523	67,637	73,667	79,154
Average Vehicle Occupancy	Persons per Vehicle	Peak Hour	1.13	1.24	1.16	1.18
		Peak Period	1.13	1.24	1.16	1.18
Average Density	Passenger Cars per Mile	Peak Hour	48.7	24.5	25.9	51.7
		Peak Period	39.1	22.4	24.5	35.3
Average Level of Service (LOS)	-	Peak Hour	F	C	C	F
		Peak Period	E	C	C	E

Notes:
Peak Hour: 7-8 AM, 4-5 PM
Peak Period: 6 AM-12 PM, 2-8 PM

Performance Measure	Units	Time Period	Year 2025 No Build Alternative			
			Northbound AM	Northbound PM	Southbound AM	Southbound PM
Average Travel Time	Minutes per Vehicle	Peak Hour	6.2	4.0	4.3	8.8
		Peak Period	5.3	4.0	4.4	6.6
Average Speed	Miles per Hour	Peak Hour	39	62	57	28
		Peak Period	46	61	56	38
Average Travel Delay	Minutes per Vehicle	Peak Hour	2.3	0.0	0.3	4.8
		Peak Period	1.3	0.1	0.4	2.6
Number of Vehicle Trips (vehicle	Vehicles per Hour	Peak Hour	3,930	3,197	3,222	3,574
		Peak Period	3,742	2,883	3,129	3,481
Number of Person Trips (person	Persons per Hour	Peak Hour	4,440	3,964	3,737	4,218
		Peak Period	4,229	3,575	3,630	4,107
Freeway Travel Time (VHT)	VehicleHours	Peak Hour	407	212	233	525
		Peak Period	1,887	1,156	1,383	2,191
Travel Distance (VMT)	Vehicle-Miles	Peak Hour	16,012	13,027	13,351	14,812
		Peak Period	87,677	70,493	77,808	82,938
Average Vehicle Occupancy	Persons per Vehicle	Peak Hour	1.13	1.24	1.16	1.18
		Peak Period	1.13	1.24	1.16	1.18
Average Density	Passenger Cars per Mile	Peak Hour	49.0	25.8	27.9	59.1
		Peak Period	40.0	23.5	27.7	44.7
Average Level of Service (LOS)	-	Peak Hour	F	C	D	F
		Peak Period	E	C	D	E

Notes:
Peak Hour: 7-8 AM, 4-5 PM
Peak Period: 6 AM-12 PM, 2-8 PM

Performance Measure	Units	Time Period	Year 2045 No Build Alternative			
			Northbound AM	Northbound PM	Southbound AM	Southbound PM
Average Travel Time	Minutes per Vehicle	Peak Hour	6.3	4.4	4.9	10.2
		Peak Period	5.4	4.2	5.0	7.6
Average Speed	Miles per Hour	Peak Hour	39	55	51	24
		Peak Period	45	58	50	33
Average Travel Delay	Minutes per Vehicle	Peak Hour	2.3	0.5	0.9	6.1
		Peak Period	1.4	0.3	1.0	3.5
Number of Vehicle Trips (vehicle	Vehicles per Hour	Peak Hour	3,907	3,939	3,502	3,482
		Peak Period	3,706	3,359	3,391	3,635
Number of Person Trips (person	Persons per Hour	Peak Hour	4,415	4,885	4,063	4,109
		Peak Period	4,188	4,165	3,934	4,289
Freeway Travel Time (VHT)	VehicleHours	Peak Hour	409	290	287	589
		Peak Period	1,912	1,418	1,692	2,633
Travel Distance (VMT)	Vehicle-Miles	Peak Hour	15,920	16,052	14,513	14,429
		Peak Period	86,835	82,121	84,312	86,603
Average Vehicle Occupancy	Persons per Vehicle	Peak Hour	1.13	1.24	1.16	1.18
		Peak Period	1.13	1.24	1.16	1.18
Average Density	Passenger Cars per Mile	Peak Hour	49.3	35.4	33.9	65.1
		Peak Period	40.4	29.0	33.6	51.8
Average Level of Service (LOS)	-	Peak Hour	F	E	D	F
		Peak Period	E	D	D	F

Notes:
Peak Hour: 7-8 AM, 4-5 PM
Peak Period: 6 AM-12 PM, 2-8 PM

Performance Measure	Units	Time Period	2019 Existing Build Alternative			
			Northbound AM	Northbound PM	Southbound AM	Southbound PM
Average Travel Time	Minutes per Vehicle	Peak Hour	5.4	3.9	4.0	7.0
		Peak Period	4.7	4.0	4.0	5.0
Average Speed	Miles per Hour	Peak Hour	46	62	62	36
		Peak Period	53	62	62	50
Average Travel Delay	Minutes per Vehicle	Peak Hour	1.4	0.0	0.0	2.9
		Peak Period	0.7	0.0	0.0	1.0
Number of Vehicle Trips (vehicle	Vehicles per Hour	Peak Hour	4,068	3,082	3,143	3,700
		Peak Period	3,715	2,785	2,984	3,332
Number of Person Trips (person	Persons per Hour	Peak Hour	4,597	3,821	3,645	4,365
		Peak Period	4,197	3,454	3,461	3,932
Freeway Travel Time (VHT)	Vehicle- Hours	Peak Hour	363	203	212	429
		Peak Period	1,657	1,102	1,201	1,588
Travel Distance (VMT)	Vehicle-Miles	Peak Hour	16,577	12,557	13,023	15,331
		Peak Period	87,033	68,096	74,182	79,392
Average Vehicle Occupancy	Persons per Vehicle	Peak Hour	1.13	1.24	1.16	1.18
		Peak Period	1.13	1.24	1.16	1.18
Average Density	Passenger Cars per Mile	Peak Hour	37.1	20.5	21.2	41.3
		Peak Period	29.4	18.5	19.9	27.8
Average Level of Service (LOS)		Peak Hour	E	C	C	E
		Peak Period	D	C	C	D

Notes:
Peak Hour: 7-8 AM, 4-5 PM
Peak Period: 6 AM-12 PM, 2-8 PM

Performance Measure	Units	Time Period	Year 2025 Build Alternative			
			Northbound AM	Northbound PM	Southbound AM	Southbound PM
Average Travel Time	Minutes per Vehicle	Peak Hour	5.4	4.0	4.1	9.5
		Peak Period	4.7	4.0	4.1	6.9
Average Speed	Miles per Hour	Peak Hour	45	62	61	26
		Peak Period	52	62	61	36
Average Travel Delay	Minutes per Vehicle	Peak Hour	1.5	0.0	0.1	5.5
		Peak Period	0.7	0.0	0.0	2.9
Number of Vehicle Trips (vehicle	Vehicles per Hour	Peak Hour	4,065	3,377	3,342	3,703
		Peak Period	3,744	2,931	3,173	3,532
Number of Person Trips (person	Persons per Hour	Peak Hour	4,593	4,188	3,877	4,370
		Peak Period	4,231	3,635	3,681	4,168
Freeway Travel Time (VHT)	VehicleHours	Peak Hour	367	223	227	588
		Peak Period	1,673	1,163	1,285	2,328
Travel Distance (VMT)	Vehicle-Miles	Peak Hour	16,563	13,762	13,851	15,345
		Peak Period	87,727	71,669	78,896	84,163
Average Vehicle Occupancy	Persons per Vehicle	Peak Hour	1.13	1.24	1.16	1.18
		Peak Period	1.13	1.24	1.16	1.18
Average Density	Passenger Cars per Mile	Peak Hour	37.5	22.6	22.8	55.2
		Peak Period	29.7	19.6	21.4	39.6
Average Level of Service (LOS)	-	Peak Hour	E	C	C	F
		Peak Period	D	C	C	E

Notes:
Peak Hour: 7-8 AM, 4-5 PM
Peak Period: 6 AM-12 PM, 2-8 PM

Performance Measure	Units	Time Period	Year 2025 Build Alternative			
			Northbound AM	Northbound PM	Southbound AM	Southbound PM
Average Travel Time	Minutes per Vehicle	Peak Hour	5.7	4.1	4.6	17.5
		Peak Period	4.9	4.0	4.3	12.1
Average Speed	Miles per Hour	Peak Hour	43	60	54	14
		Peak Period	50	61	57	21
Average Travel Delay	Minutes per Vehicle	Peak Hour	1.8	0.2	0.6	13.5
		Peak Period	0.9	0.1	0.3	8.1
Number of Vehicle Trips (vehicle	Vehicles per Hour	Peak Hour	3,986	3,938	3,788	3,481
		Peak Period	3,694	3,394	3,587	3,781
Number of Person Trips (person	Persons per Hour	Peak Hour	4,505	4,883	4,394	4,107
		Peak Period	4,174	4,209	4,161	4,462
Freeway Travel Time (VHT)	VehicleHours	Peak Hour	381	269	291	1,017
		Peak Period	1,720	1,371	1,557	4,387
Travel Distance (VMT)	Vehicle-Miles	Peak Hour	16,244	16,046	15,698	14,424
		Peak Period	86,548	82,980	89,188	90,092
Average Vehicle Occupancy	Persons per Vehicle	Peak Hour	1.13	1.24	1.16	1.18
		Peak Period	1.13	1.24	1.16	1.18
Average Density	Passenger Cars per Mile	Peak Hour	38.5	27.4	29.7	91.0
		Peak Period	30.4	23.3	26.2	69.4
Average Level of Service (LOS)		Peak Hour	E	D	D	F
		Peak Period	D	C	D	F

Notes:
Peak Hour: 7-8 AM, 4-5 PM
Peak Period: 6 AM-12 PM, 2-8 PM

Appendix B

Operational Fuels Consumption

- Project Corridor Fuels Consumption Calculations
- Gasoline and Diesel Fuel Consumption Rates
- CT EMFAC Output - 2019
- CT EMFAC Output - 2025
- CT EMFAC Output - 2045

Year Alt	Direction	Time Period	Time Sum	$\underline{\text { VMT }}$ Speed	Gas Gal/Day		Diesel Gal/Day	Gas Gal/Year	Diesel Gal/Year
2019 NB	North	AM/PH	PH	16,840	29	626.704	56.828	217,466.277	19,719.408
2019 NB	North	AM/PP	PP	80,230	37	2,751.761	246.033	954,860.939	85,373.561
2019 NB	North	PM/PH	PH	14,535	62	564.057	43.954	195,727.723	15,251.982
2019 NB	North	PM/PP	PP	59,614	62	2,313.429	180.273	802,759.716	62,554.639
2019 NB	North	OP	OP	76,111	62	2,953.624	230.160	1,024,907.651	79,865.403
2019 NB	South	AM/PH	PH	28,896	59	1,096.378	84.787	380,443.100	29,420.965
2019 NB	South	AM/PP	PP	134,841	60	5,155.241	402.635	1,788,868.666	139,714.423
2019 NB	South	PM/PH	PH	32,962	23	1,458.100	127.095	505,960.853	44,101.923
2019 NB	South	PM/PP	PP	160,319	35	5,677.858	507.089	1,970,216.623	175,959.882
2019 NB	South	OP	OP	118,732	62	4,607.609	359.046	1,598,840.315	124,588.812
NB Total				723,080		27,204.8	2,237.9	9,440,051.9	776,551.0
2019 B	North	AM/PH	PH	16,843	29	626.8	56.8	217,505.0	19,722.9
2019 B	North	AM/PP	PP	80,362	36	2,801.2	250.3	972,014.4	86,858.1
2019 B	North	PM/PH	PH	14,659	62	568.9	44.3	197,397.5	15,382.1
2019 B	North	PM/PP	PP	59,989	62	2,328.0	181.4	807,809.5	62,948.1
2019 B	North	OP	OP	76,397	62	2,964.7	231.0	1,028,758.9	80,165.5
2019 B	South	AM/PH	PH	28,996	60	1,108.6	86.6	384,675.5	30,044.0
2019 B	South	AM/PP	PP	135,719	60	5,188.8	405.3	1,800,516.7	140,624.2
2019 B	South	PM/PH	PH	33,554	24	1,415.8	124.4	491,291.1	43,177.8
2019 B	South	PM/PP	PP	160,790	36	5,604.7	500.8	1,944,827.1	173,787.6
2019 B	South	OP	OP	119,411	62	4,634.0	361.1	1,607,983.7	125,301.3
B Total				726,720		27,241.4	2,242.1	9,452,779.5	778,011.6
2025 NB	North	AM/PH	PH	17,653	32	541.4	52.8	187,858.6	18,336.3
2025 NB	North	AM/PP	PP	82,792	30	2,674.8	260.9	928,152.9	90,524.5
2025 NB	North	PM/PH	PH	15,341	62	503.7	43.5	174,779.3	15,077.8
2025 NB	North	PM/PP	PP	63,055	62	2,070.3	178.6	718,382.7	61,973.2
2025 NB	North	OP	OP	79,499	62	2,610.2	225.2	905,728.5	78,135.0
2025 NB	South	AM/PH	PH	29,965	60	969.3	83.4	336,334.7	28,926.8
2025 NB	South	AM/PP	PP	142,429	61	4,641.7	399.8	1,610,673.1	138,739.9
2025 NB	South	PM/PH	PH	33,498	22	1,310.8	126.7	454,840.4	43,951.9
2025 NB	South	PM/PP	PP	167,875	31	5,286.0	515.7	1,834,235.6	178,963.7
2025 NB	South	OP	OP	124,303	62	4,081.2	352.1	1,416,178.4	122,170.3
NB Total				756,410		24,689.2	2,238.6	8,567,164.2	776,799.5
2025 B	North	AM/PH	PH	17,981	31	566.2	55.2	196,464.0	19,168.7
2025 B	North	AM/PP	PP	82,578	25	3,006.4	292.7	1,043,204.8	101,580.4
2025 B	North	PM/PH	PH	15,447	62	507.2	43.8	175,987.0	15,182.0
2025 B	North	PM/PP	PP	63,490	62	2,084.5	179.8	723,338.7	62,400.7
2025 B	North	OP	OP	79,794	62	2,619.9	226.0	909,089.4	78,425.0
2025 B	South	AM/PH	PH	30,793	61	1,003.5	86.4	348,225.8	29,995.4
2025 B	South	AM/PP	PP	141,766	61	4,620.1	398.0	1,603,175.5	138,094.0
2025 B	South	PM/PH	PH	36,992	53	1,125.2	95.4	390,448.9	33,117.5
2025 B	South	PM/PP	PP	167,124	59	5,365.5	453.6	1,861,840.6	157,413.6
2025 B	South	OP	OP	125,275	62	4,113.1	354.8	1,427,252.4	123,125.6
B Total				761,240		25,011.6	2,185.9	8,679,027.0	758,502.9

Year Alt	Direction	Time Period	Time Sum	VMT	Speed	Gas Gal/Day		Diesel Gal/Day	Gas Gal/Year	Diesel Gal/Year
2045 NB	North	AM/PH	PH		17,201	23	506.5	52.2	175,754.9	18,108.0
2045 NB	North	AM/PP	PP		77,110	15	3,109.2	299.6	1,078,899.8	103,951.6
2045 NB	North	PM/PH	PH		17,508	60	446.1	40.0	154,784.4	13,882.0
2045 NB	North	PM/PP	PP		72,245	60	1,840.6	165.1	638,702.4	57,282.7
2045 NB	North	OP	OP		81,826	62	2,116.1	190.8	734,298.1	66,208.2
2045 NB	South	AM/PH	PH		34,330	55	841.7	74.4	292,079.7	25,826.3
2045 NB	South	AM/PP	PP		162,771	59	4,116.1	361.2	1,428,291.3	125,343.8
2045 NB	South	PM/PH	PH		31,056	14	1,308.0	127.8	453,868.1	44,347.2
2045 NB	South	PM/PP	PP		176,151	21	5,665.9	571.9	1,966,058.5	198,446.5
2045 NB	South	OP	OP		134,462	62	3,477.4	313.5	1,206,648.1	108,797.9
NB Total					804,660		23,427.6	2,196.5	8,129,385.3	762,194.2
2045 B	North	AM/PH	PH		16,931	20	567.6	56.8	196,957.6	19,699.1
2045 B	North	AM/PP	PP		77,949	12	3,562.8	356.7	1,236,280.4	123,762.2
2045 B	North	PM/PH	PH		17,492	62	452.4	40.8	156,971.4	14,153.4
2045 B	North	PM/PP	PP		72,162	62	1,866.2	168.3	647,574.3	58,388.8
2045 B	North	OP	OP		82,036	62	2,121.6	191.3	736,182.6	66,378.2
2045 B	South	AM/PH	PH		34,660	59	876.5	76.9	304,136.3	26,690.4
2045 B	South	AM/PP	PP		162,798	60	4,147.7	372.0	1,439,261.9	129,081.7
2045 B	South	PM/PH	PH		37,307	25	1,069.2	109.4	371,027.3	37,969.2
2045 B	South	PM/PP	PP		188,873	30	4,803.8	490.3	1,666,911.6	170,139.1
2045 B	South	OP	OP		140,892	62	3,643.7	328.5	1,264,350.2	114,000.6
B Total					831,100		23,111.4	2,191.0	8,019,653.7	760,262.6

CT-EMFAC FUEL
CONSUMPTION RATES gallons/fleet-mile
Year Speed Gas Diesel
$2019 \quad 10 \quad 0.074026 \quad 0.006468$
$2019 \quad 11 \quad 0.0713330 .006181$
$2019 \quad 120.068639 \quad 0.005895$
$2019 \quad 13 \quad 0.065946 \quad 0.005608$
$2019 \quad 140.0632520 .005322$
$2019 \quad 15 \quad 0.060559 \quad 0.005035$
$2019 \quad 16 \quad 0.0578660 .004748$
$2019 \quad 17 \quad 0.0551720 .004462$
$2019 \quad 18 \quad 0.0524790 .004175$
$2019 \quad 19 \quad 0.049785 \quad 0.003889$
$2019 \quad 20 \quad 0.050357 \quad 0.004298$
$2019 \quad 21 \quad 0.048317 \quad 0.004151$
$2019 \quad 220.0462760 .004003$
$2019 \quad 230.044236 \quad 0.003856$
$2019 \quad 240.0421950 .003708$
$2019 \quad 25 \quad 0.043056 \quad 0.003785$
$2019 \quad 260.0415960 .003682$
$2019 \quad 27 \quad 0.040136 \quad 0.00358$
$2019 \quad 28 \quad 0.038675 \quad 0.003477$
$2019 \quad 290.0372150 .003375$
$2019 \quad 30 \quad 0.03821 \quad 0.003404$
$2019 \quad 31 \quad 0.037241 \quad 0.003328$
$2019 \quad 320.0362720 .003252$
$2019 \quad 33 \quad 0.0353020 .003175$
$2019 \quad 34 \quad 0.0343330 .003099$
$2019 \quad 35 \quad 0.035416 \quad 0.003163$
$2019 \quad 36 \quad 0.034857 \quad 0.003115$
$2019 \quad 37 \quad 0.034298 \quad 0.003067$
$2019 \quad 38 \quad 0.03374 \quad 0.003018$
$2019 \quad 39 \quad 0.033181 \quad 0.00297$
$2019 \quad 40 \quad 0.03427 \quad 0.002975$
$2019 \quad 41 \quad 0.034041 \quad 0.002937$
$2019 \quad 420.033812 \quad 0.0029$
$2019 \quad 430.0335820 .002862$
$2019 \quad 44 \quad 0.0333530 .002825$
$2019 \quad 45 \quad 0.0343730 .002853$
$2019 \quad 460.0343940 .002829$
$2019 \quad 47 \quad 0.0344140 .002804$
$2019 \quad 48 \quad 0.034435 \quad 0.00278$
$2019 \quad 49 \quad 0.0344550 .002755$
$2019 \quad 50 \quad 0.035361 \quad 0.002837$
$2019 \quad 510.0355590 .002834$
$2019 \quad 52 \quad 0.0357560 .002831$
$2019 \quad 53 \quad 0.035954 \quad 0.002827$

CT-EMFAC FUEL
CONSUMPTION RATES gallons/fleet-mile
Year Speed Gas Diesel
$2019 \quad 54 \quad 0.036151 \quad 0.002824$
$2019 \quad 550.0367950 .002891$
$2019 \quad 560.0370820 .002902$
$2019 \quad 57 \quad 0.0373690 .002913$
$2019 \quad 580.0376550 .002923$
$2019 \quad 590.0379420 .002934$
$2019 \quad 60 \quad 0.0382320 .002986$
$2019 \quad 61 \quad 0.038519 \quad 0.003005$
$2019 \quad 620.0388070 .003024$
$2019 \quad 630.0390940 .003043$
$2019 \quad 640.0393820 .003062$
$2019 \quad 650.0382510 .003098$
$2025 \quad 100.0607340 .006114$
$2025 \quad 110.0585230 .005834$
$2025 \quad 120.0563120 .005554$
$2025 \quad 13 \quad 0.05410 .005275$
$2025 \quad 140.051889 \quad 0.004995$
$2025 \quad 150.049678 \quad 0.004715$
$2025 \quad 160.0474670 .004435$
$2025 \quad 170.0452560 .004155$
$2025 \quad 180.0430440 .003876$
$2025 \quad 190.0408330 .003596$
$2025 \quad 200.0413060 .004048$
$2025 \quad 210.0396320 .003915$
$2025 \quad 220.037957 \quad 0.003781$
$2025 \quad 230.0362830 .003648$
$2025 \quad 24 \quad 0.034608 \quad 0.003514$
$2025 \quad 250.0353150 .003545$
$2025 \quad 260.034117 \quad 0.003444$
$2025 \quad 270.032919 \quad 0.003344$
$2025 \quad 28 \quad 0.031720 .003243$
$2025 \quad 290.0305220 .003143$
$2025 \quad 300.031339 \quad 0.003151$
$2025 \quad 31 \quad 0.030544 \quad 0.003072$
$2025 \quad 320.029749 \quad 0.002993$
$2025 \quad 330.0289530 .002915$
$2025 \quad 34 \quad 0.028158 \quad 0.002836$
$2025 \quad 350.029048 \quad 0.002897$
$2025 \quad 36 \quad 0.02859 \quad 0.002846$
$2025 \quad 370.0281320 .002795$
$2025 \quad 380.0276730 .002745$
$2025 \quad 390.0272150 .002694$
$2025 \quad 400.0281130 .002705$
$2025 \quad 41 \quad 0.027926 \quad 0.002667$

CT-EMFAC FUEL
CONSUMPTION RATES gallons/fleet-mile
Year Speed Gas Diesel
$2025 \quad 42 \quad 0.0277390 .002628$
$2025 \quad 430.0275520 .00259$
$2025 \quad 44 \quad 0.027365 \quad 0.002551$
$2025 \quad 45 \quad 0.028202 \quad 0.002588$
$2025 \quad 46 \quad 0.02822 \quad 0.002565$
$2025 \quad 47 \quad 0.028238 \quad 0.002541$
$2025 \quad 48 \quad 0.028255 \quad 0.002518$
$2025 \quad 49 \quad 0.0282730 .002494$
$2025 \quad 50 \quad 0.029017 \quad 0.002583$
$2025 \quad 51 \quad 0.02918 \quad 0.002582$
$2025 \quad 520.0293430 .002581$
$2025 \quad 530.0295060 .00258$
$2025 \quad 54 \quad 0.029669 \quad 0.002579$
$2025 \quad 550.030198 \quad 0.002656$
$2025 \quad 56 \quad 0.0304340 .002671$
$2025 \quad 57 \quad 0.03067 \quad 0.002685$
$2025 \quad 58 \quad 0.030907 \quad 0.0027$
$2025 \quad 59 \quad 0.0311430 .002714$
$2025 \quad 60 \quad 0.031377 \quad 0.002782$
$2025 \quad 61 \quad 0.031613 \quad 0.002807$
$2025 \quad 620.0318490 .002832$
$2025 \quad 63 \quad 0.032084 \quad 0.002858$
$2025 \quad 64 \quad 0.032320 .002883$
$2025 \quad 650.0313910 .002942$
$2045 \quad 10 \quad 0.043846 \quad 0.005036$
$2045 \quad 11 \quad 0.04225 \quad 0.004806$
$2045 \quad 12 \quad 0.0406530 .004576$
$2045 \quad 13 \quad 0.039057 \quad 0.004345$
$2045 \quad 14 \quad 0.03746 \quad 0.004115$
$2045 \quad 15 \quad 0.0358640 .003885$
$2045 \quad 160.034268 \quad 0.003655$
$2045 \quad 17 \quad 0.032671 \quad 0.003425$
$2045 \quad 180.0310750 .003194$
$2045 \quad 19 \quad 0.029478 \quad 0.002964$
$2045 \quad 20 \quad 0.029818 \quad 0.003353$
$2045 \quad 21 \quad 0.028609 \quad 0.003247$
$2045 \quad 22 \quad 0.0274 \quad 0.00314$
$2045 \quad 23 \quad 0.02619 \quad 0.003034$
$2045 \quad 240.0249810 .002927$
$2045 \quad 25 \quad 0.0254920 .002933$
$2045 \quad 26 \quad 0.024627 \quad 0.002849$
$2045 \quad 27 \quad 0.0237620 .002765$
$2045 \quad 28 \quad 0.022896 \quad 0.002681$
$2045 \quad 290.022031 \quad 0.002597$

CT-EMFAC FUEL

File Name:	Santa Cruz (NCC) - 2019-Annual.EF
CT-EMFAC2017 Version:	1.0.2.27401
\quad Run Date:	2/19/2020 17:18
\quad Area:	Santa Cruz (NCC)
Analysis Year:	Annual

FleetAverageFuelConsumption(gallons/veh-mile)

Fueltype	< $=5 \mathrm{mph}$		10 mph	15 mph	20 mph	25 mph	30 mph	35 mph	40 mph	45 mph	50 mph	55 mph	60 mph	65 mph	70 mph	75 mph
Gasoline		0.091189	0.074026	0.060559	0.050357	0.043056	0.03821	0.035416	0.03427	0.034373	0.035361	0.036795	0.038232	0.038251	0.038251	0.038251
Diesel		0.007574	0.006468	0.005035	0.004298	0.003785	0.003404	0.003163	0.002975	0.002853	0.002837	0.002891	0.002986	0.003098	0.003098	0.003098

FleetAverageFuelConsumption(gallons/veh-mile)

Fu	h		10	15 mph	20 mph	25 mph	30 mph	35 mph	40 mph	45 mph	50 mph	55 mph	60 mph	65 mph	70 mph	75
Gasoline		0.074803	0.060734	0.049678	0.041306	0.035315	0.031339	0.029048	0.028113	0.028202	0.029017	0.030198	0.031377	0.031391	0.031391	0.03
Dies		0.007279	0.006114	0.004715	0.004048	0.003545	0.003151	0.002897	0.002705	0.002588	0.002583	0.002656	0.002782	0.002942	0.002942	0.002

File Name:	Santa Cruz (NCC) - 2045 - Annual.EF	
CT-EMFAC2017 Version:	1.0.2.27401	
Run Date:	2/19/2020 17:22	
Area:	Santa Cruz (NCC)	
Analysis Year:	2045	
Season:	Annual	
Vehicle Category	VMT Fraction Diesel VM1Gas VMT Fraction	
	Across Category Within Cat Within Category	
Truck 1	0.019	$0.521 \quad 0.479$
Truck 2	0.021	0.926 0.062
Non-Truck	0.96	$0.015 \quad 0.931$
==		
Road Type:	Freeway	
Silt Loading Factor:	CARB	$0.015 \mathrm{~g} / \mathrm{m} 2$
Precipitation Correction:	None	$\mathrm{P}=\mathrm{NA} \quad \mathrm{N}=\mathrm{NA}$

FleetAverageFuelConsumption(gallons/veh-mile)

FuelType	< $=5 \mathrm{mph}$	10 mph	15 mph	20 mph	25 mph	30 mph	35 mph	40 mph	45 mph	50 mph	55 mph	60 mph	65 mph	70 mph	75 mph
Gasoline	0.054002	0.043846	0.035864	0.029818	0.025492	0.022622	0.020968	0.020295	0.020362	0.020953	0.021808	0.022661	0.022671	0.022671	0.022671
Diesel	0.006039	0.005036	0.003885	0.003353	0.002933	0.002596	0.002372	0.002206	0.002108	0.002104	0.002168	0.002285	0.002444	0.002444	0.002444

Appendix C

Construction Fuels Consumption

- Construction Fuel Consumption Calculations
- Road Construction Emissions Model Output
- Road Construction Emissions Model Input
- Emission Factors for GHG Inventories - USEPA 2020

Worker Commute

Emissions	CO2		Source	Fuel	Total CO2 Emissions (tons)	Combustion Factor (poundsCO2/gallon)	Gallons Fuel
Pounds per day - Grubbing/Land Clearing	316.43		Worker Vehicles	Gas	218.03	19.36	22,527.55
Tons per const. Period - Grubbing/Land Clearing	12.53	1,294.7	Soil Haul Trucks	Diesel	1,765.98	22.51	156,912.42
Pounds per day - Grading/Excavation	701.87		Asphalt Trucks	Diesel	482.06	22.51	42,832.51
Tons per const. Period - Grading/Excavation	111.18	11,487.2	Water Trucks	Diesel	57.96	22.51	5,149.70
Pounds per day - Drainage/Utilities/Sub-Grade	500.93		Equipment	Diesel	1,912.54	22.51	169,934.44
Tons per const. Period - Drainage/Utilities/Sub-Grad	69.43	7,173.7					
Pounds per day - Paving	419.04					Total Gasoline (Gallons)	22,527.6
Tons per const. Period - Paving	24.89	2,571.8				Total Diesel Fuel (Gallons)	374,829.1
Total tons per construction project	218.03						
						Annual Average	
Soil Hauling						Gasoline	7,509.2
						Diesel	124,943.0
Hauling Emissions	CO2						
Pounds per day - Grubbing/Land Clearing	8344.737871						
Tons per const. Period - Grubbing/Land Clearing	330.4516197	47,597.5					
Pounds per day - Grading/Excavation	8299.795735						
Tons per const. Period - Grading/Excavation	1314.687644	\#\#\#\#\#\#\#					
Pounds per day - Drainage/Utilities/Sub-Grade	871.8972311						
Tons per const. Period - Drainage/Utilities/Sub-Grad	120.8449562	54,727.0					
Pounds per day - Paving	0						
Tons per const. Period - Paving	0	57,986.5					
Total tons per construction project	1765.98422						

Asphalt Hauling

Emissions	CO2
Pounds per day - Grubbing/Land Clearing	
Tons per const. Period - Grubbing/Land Clearing	
Pounds per day - Grading/Excavation	
Tons per const. Period - Grading/Excavation	
Pounds per day - Drainage/Utilities/Sub-Grade	
Tons per const. Period - Drainage/Utilities/Sub-Grad	
Pounds per day - Paving	8115.52416
Tons per const. Period - Paving	482.062135
Total tons per construction project	482.062135

Water Trucks

Emissions	CO2	
Pounds per day - Grubbing/Land Clearing		148.3508955
Tons per const. Period - Grubbing/Land Clearing	5.874695461	
Pounds per day - Grading/Excavation	147.5519242	
Tons per const. Period - Grading/Excavation	23.37222479	
Pounds per day - Drainage/Utilities/Sub-Grade	145.3162052	
Tons per const. Period - Drainage/Utilities/Sub-Grad	20.14082604	
Pounds per day - Paving	144.2759852	
Tons per const. Period - Paving	8.569993519	
Total tons per construction project	57.95773981	

		CO2
Grubbing/Land Clearing	pounds per day	5034.42966
Grubbing/Land Clearing	tons per phase	199.363415
Grading/Excavation	pounds per day	6794.524
Grading/Excavation	tons per phase	1076.2526
Drainage/Utilities/Sub-Grade	pounds per day	3426.72449
Drainage/Utilities/Sub-Grade	tons per phase	474.944015
Paving	pounds per day	2726.96367
Paving	tons per phase	161.981642
All Activities	total tons project	1912.54167

Road Construction Emissions Model, Version 9.0.0

User Input Soil Hauling Emisisions	User Override of Miles/Round Trip	Program Estimate ofMiles/Round Trip		User Override of Truck Round Trips/Day	Default Values Round Trips/Day	Calculated Daily VMT	sox	co2	CH4	${ }^{2} 20$	core	
Milestroun dip: Gububingland Cleationg		$\xrightarrow{30.00} 3$			75 75	${ }_{\text {2250.00 }}^{2250.00}$						
Minestround tip: rainasenvilitessub-Grade		30.00			8	240.00						
Miestround tip: Paving		30.00			0	0.00						
Emission Rates	Ros	co		${ }_{\text {Nox }}^{346}$	${ }_{\text {PM10 }}{ }_{0}$	PM2.5						
Grubingl Land Clearing (gramsmmile)	${ }_{0}^{0.04}$	- 0.43				0.05	0.02	${ }^{1,68227}$	0.00	0.26		
	${ }_{0}^{0.04}$	0.430.43		${ }_{\substack{3.41 \\ 3.40}}$	${ }_{0}^{0.11}$	${ }_{0}^{0.05}$	${ }_{0}^{0.02}$	${ }_{\substack{1,67321 \\ 1,64786}}^{1.802}$	${ }_{0}^{0.00}$	- ${ }_{0}^{0.26}$	(1,751.093	
Paving Gramsmmie)				0.11		0.02	1.636.06	0.00	0.26	1,712.74		
	0.000.00		0.00 0.00		4.46 4.46	${ }_{0}^{0.00}$	0.00 0.00	${ }_{0}^{0.000}$	0.00 0.00	${ }_{0}^{0.00}$	${ }_{0}^{0.000}$	0.00 0.00
Draininguvilitess Sub-Grade (gramstrip)			0.00	4.47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	-		${ }_{\text {cose }}^{0.00}$	${ }_{\substack{4.48 \\ \text { Nox }}}^{\text {dic }}$	${ }_{\text {PM10 }}^{0.00}$	${ }_{\text {PM25 }}^{0.00}$	coso sox	${ }_{\text {O. }}^{0}$	${ }_{\text {c }}^{0.00}$	-	- 0.00	
Pounds persday - Gubbingl Land Clearing	R0.20		2.12	${ }_{17.90}$		0.26	0.08		0.01	${ }^{131}$		
Tons per const Period -Gubbingland Cle			0.08	0.71	0.02	0.01	0.00		0.00	, 05	5,94	
	${ }^{0.01}$		2.12	17.84	0.57	0.26	0.08	8,29.80	01	1.30	8.88.80	
Tons ere const Period - GradingExacavaion	0.200.03		0.34	2.83	0.09	0.04	0.01	1.314 .69	00	0.21	6.31	
Pounds per day - Draingeelulititesslub-Grade	0.02		0.23	1.89	0.06	0.03	0.01	${ }^{87.90}$	0.00	0.14	${ }^{912.76}$	
Tons eer onst Period. Orainagevililies/Sub-Grade	0.00		${ }^{0.03}$	${ }^{0.26}$	0.01	0.00	0.00	${ }^{120.84}$	0.00	${ }^{0.02}$		
Pounds perday - Paving	0.000.00		0.00	${ }^{0.00}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Tons epe const Period - Paving Toial tons per constuction projet	$\begin{aligned} & \begin{array}{l} 0.00 \\ 0.04 \end{array} \\ & \hline 0 \end{aligned}$		0.00 0.45	lo.00 3.80	0.00 0.12	0.00 0.05	0.00 0.02	1.0.00 1,76.98	0.00 0.00	0.00 0.28		

Note: Asphat Hauling emisision defaut values can be overididen in cells D94 through D94, and f91 hrough F94

Nole: Worker commule defaut talues can be vermiden in colls 0121 through 0126

Nole: Fugitive dust defaut values can be verididen in cells 0183 through 0185

Fugitive Dust	$\xrightarrow{\text { User OVeride of Max }}$ Acrease isturediday	${ }_{\text {Maximum }}^{\text {Defult }}$	${ }_{\text {pM10 }}^{\text {PMoustay }}$	$\xrightarrow{\text { PMM10 }}$	$\xrightarrow[\text { PM2.5 }]{\text { poundsay }}$	
Iotive Dust-Grubingland cleaxing		${ }_{3}^{3} \mathbf{0 0}$	30.00	${ }^{1}$	${ }_{6} 624$	
		3.00 3.00	${ }^{30.00} 3000$	${ }_{4.16}^{4.15}$		0.86

mopexasation	Numberateverices				Ros	co	nox	pmo	pm25	sox	${ }^{0} 2$	+4	N20	${ }^{\text {core }}$
	Progamestimate											$\frac{\text { nestay }}{0.00}$	pounststay	pounstas
				coin	0,	0,00								
								On	(200	$\begin{gathered} 0.00 \\ \substack{000} \\ 0 \end{gathered}$	0		(0.00	
			Muse ofatil	Comen end (oatar Mees	(000	-	-0,	0.00	000	$\begin{gathered} \text { yovo } \\ \text { oon } \\ 000 \end{gathered}$	$\begin{gathered} \text { youc } \\ 0.000 \\ 0 \end{gathered}$	$\begin{gathered} \text { youd } \\ \text { ouc } \\ 0.0 \end{gathered}$	-	
200	1		Uned	Crawler Tractors	(0,		(oin	$\begin{gathered} 000 \\ 0.030 \\ 0.000 \end{gathered}$	$\begin{gathered} 0.020 \\ 0.020 \\ 0.00 \end{gathered}$	$\begin{aligned} & 000 \\ & \text { a00 } \\ & 000 \end{aligned}$		$\begin{gathered} 000 \\ 0.090 \\ 0.000 \end{gathered}$		
${ }^{200}$	3						(en			$\begin{gathered} 0.00 \\ 0.00 \\ 0 \\ 0 \end{gathered}$	1.00088	and 0.32 0.00		
400	2		Mode ofailier		-		(os	-	-	$\begin{gathered} 000 \\ 0.000 \\ 0.0 \end{gathered}$	${ }_{\text {25000 }}$	-	-0,	(iseos
			Iosalod	Off-Highway Tractors	0.00							000		
			Wodiolosut Ter		-000	0,00	${ }_{0}^{0.00}$	0.00	0.00	-000	0,00	$\begin{gathered} 0.00 \\ \substack{000 \\ 0 \\ 0} \end{gathered}$	0.00	0,000
			Model ofeaut Ter		-000	0,00	0,00	0.00	0,00	-000	0,00	0.00	0.00	-0,
			Modot ofiller		-0,	-000	-0,	-000	O.00	-0,	-	$\begin{gathered} \text { oon } \\ \text { on } \\ \text { in } \end{gathered}$	-0,	-0,000
					(000					-		$\begin{gathered} \text { o.00 } \\ 0.00 \end{gathered}$		O,000
	2		Mesefopobut Ter		000	000	0,	0.00	000	-0,	${ }_{\text {cose }}$	0,00	0,00	(1300
			Oese ofout teer		0,00	0,00	0,000	0.00	0.00	-000		\bigcirc	-0.00	5000
0,00					(oico			(0.00	(000	-	(000	-	䢒	-0,
	${ }_{6}^{2}$				-	coiol	(0.00		(oicle	-	-	-		-0,
					-000	-	-0,	-	O,	-000	(000	-0,00	-	-0,
400	4		Nodeto ofatut or	Sutame Eipent	-0,53	${ }_{802}^{890}$	${ }_{5}^{534}$	-022	O20	001		-039	0.00	
					(0.00	¢	(0,00	(0,	(000	-	(0,	(000	(0,	- 0000
nood oftroas Euwimom							nox	pmo	pm25	${ }^{\text {sox }}$	${ }_{\text {coz }}$	${ }^{\text {che }}$	N20	core
(ent		${ }_{\text {d }}$		Trpe										
(000						-	-0,	-	-	-	(000	-	-	O00
						${ }_{\substack{0.00 \\ 0.00}}^{\substack{0}}$	0	0,000	-0,	0	0,000	(0,	-	-0,00
0		${ }_{\text {NA }}$				(000	(0.00			-	(0,	(000	(0.00	
					${ }_{\substack{3.13 \\ 0.50}}^{\text {a }}$	${ }_{4.71}^{20.71}$	${ }_{\substack{324.15}}^{5.0}$	$\underbrace{1 .}_{\substack{124 \\ 020}}$	${ }_{\text {a }}^{1.14}$	${ }_{0}^{0.07}$		220 0.35	${ }_{0}^{0.06}$	

Iagouniliess Sugrate	Numbearaveremines				Rоя	co	nox	pmo	PM25	sox	coz	CH_{4}	${ }^{2} 2$	cose	
	Progamestimae				comustay	ounstay	pounstay	poundstay				nostay		ponstasas	
${ }_{0}^{0.00}$	1					0	coiol				coion	coiol			
				coicemem	-			-0.00	O. 0.00	-0,	$\stackrel{\substack{0.00 \\ 0.00}}{ }$	$\begin{aligned} & \text { yono } \\ & 0.00 \end{aligned}$	(0.00	(iol	
				coicce	-0,	-0,	-0.00	-0,	0.00 0.00 0	-0.00	$\stackrel{0}{0.00}$	0.00 0.00 0	-	-0,	
					(000	-0,	-	-		0.00 0.00 0.0 0.0	(0,	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0 \end{aligned}$	-	-	
(200					O, 0	${ }_{20} 020$	-	-0,	0.00	0.000 0.00 0.0	$\xrightarrow{2000}$	coio 0	-000	$\xrightarrow{2000}$	
${ }_{2}^{200}$!				0.53 0.02	${ }_{\text {l }}^{17.3}$	${ }_{6}^{4.91}$	(0,	O.190	0.01		-	${ }^{0.01}$,	
				Generator Sets Graders Off-Highway Tractors	(000	-0,	-0.00	-	-0,	-0,		-	-	-0,	
				Off-Highway Trucks	(000	-000	-000	-	-0,	-0,	-	-		-0,000	
				-	-0,	-	-	-000	-0,	-0,	-	-		-0,	
0.00	1		Noded ofotult		O.	-00	(o.00		0.00		O.00	-	(0.00	-0,	
0.00	1				(000	-0,		-0,	-0,	-0,	-	-	-	-0,	
000	1				(0,	-0,	-	-0,	-	-0,		-	-	-0,	
				Rough Terrain Forklifts Rubber Tired Dozers	-		-			-	(000	(oic	-	-0,	
O.00	$\frac{1}{6}$				-0,	-0,	-	-0,	-	-0,	(000	-	-0,	-0,	
					(0,	-		-0,	-000	O,	-	-	-0,	-0,	
200	3				边				(0.0.00	-000	coin	(oin	-0,	,	
					(0.00	0.00 0.00					(0,	(en	(000	(0,	
				trpe				pount	oums		${ }_{\text {comes }}^{\text {cosal }}$		pounssay		
¢000		Cemer						pounsasay						(ond	
0,000					0.00	000	000	0,00	0.00	000	O,000	-000			
$\frac{0.00}{0.00}$					-0,00	-0,	-	-0,	-0,	-0,00	-0,	-	-	-0,000	
	Somel				pounds per day tons per phase	${ }_{0}^{1.59}$	$\underset{\substack{1723 \\ 239}}{ }$	$\xrightarrow{1601}$	(0, $\begin{aligned} & 0.61 \\ & 0.8\end{aligned}$	¢	(009		${ }_{0}^{0.75}$	0	${ }_{\substack{3.454,15 \\ 4785}}^{\text {a }}$

Equipment	User Override of Horsepowe	Default Values Horsepower	User Override of Hours/day	Default Values Hours/day
Aerial lifs		${ }^{63}$		
Ari Compressors		${ }^{78}$		8
		${ }^{221}$		${ }_{8}^{8}$
Concreeillndustrial Saws		81		8
Cranes		${ }^{231}$		8
${ }_{\text {chen }}$ Crawer Tractors		$\frac{212}{85}$		8
Excavalors		${ }_{1} 158$		8
Forkilis		89		8
Generator Sels		${ }^{84}$		8
		${ }_{124}^{187}$		8
OffHiligway Tucks		402		8
Other Construcion Equipment		${ }_{8}^{172}$		
		${ }_{168}$		8
Pavers		${ }^{130}$		8
${ }^{\text {Papaing Eauipment }}$ Prate compacors		${ }^{132}$		${ }_{8}^{8}$
Pressur Washers		13		8
Pumps		${ }_{84}^{84}$		8
$\underbrace{\substack{\text { Rough Terain Fookifits }}}_{\text {Rolers }}$		80 100		${ }_{8}^{8}$
Rubber TTied Dozers		${ }_{227}^{203}$		8
Rubber Tired Loaders		$\stackrel{203}{367}$		8
Signal Boards		6		8
${ }^{\text {Skid Stier Loaders }}$		${ }_{26}{ }^{65}$		8
		${ }_{64}^{263}$		8
Tratorst loaders Backhoes		${ }^{97}$		8
		${ }_{46}$		${ }_{8}^{8}$

end of data entry sheet

Emission Factors for Greenhouse Gas Inventories

Red text indicates an update from the 2018 version of this document.
Typically, greenhouse gas emissions are reported in units of carbon dioxide equivalent $\left(\mathrm{CO}_{2} \mathrm{e}\right)$. Gases are converted to $\mathrm{CO}_{2} \mathrm{e}$ by multiplying by their global warming potential (GWP). The emission factors listed in this document have not been converted 1o $\mathrm{CO}_{2} \mathrm{e}$. To do so, multiply the emissions by the corresponding GWP listed in the table below.

Gas	100-Year GWP
CH_{4}	25
$\mathrm{~N}_{2} \mathrm{O}$	298

Table 1	Stationary Combustion							
	Fuel Type	Heat Content (HHV)	CO_{2} Factor	CH_{4} Factor	$\mathrm{N}_{2} \mathrm{O}$ Factor	CO_{2} Factor	CH_{4} Factor	$\mathrm{N}_{2} \mathrm{O}$ Factor
		mmBtu per short ton	$\mathrm{kg} \mathrm{CO}_{2}$ per mmBtu	$\mathrm{g} \mathrm{CH}_{4}$ per mmBtu	$\mathrm{g} \mathrm{N}_{2} \mathrm{O}$ per mmBtu	$\mathrm{kg} \mathrm{CO}_{2}$ per short ton	gCH_{4} per short ton	$\begin{aligned} & \mathrm{gN} \mathrm{~N}_{2} \mathrm{O} \text { per short } \\ & \text { ton } \end{aligned}$
	Coal and Coke							
	Anthracite Coal	25.09	103.69	11	1.6	2,602	276	40
	Bituminous Coal	24.93	93.28	11	1.6	2,325	274	40
	Sub-bituminous Coal	17.25	97.17	11	1.6	1,676	190	28
	Lignite Coal	14.21	97.72	11	1.6	1,389	156	23
	Mixed (Commercial Sector)	21.39	94.27	11	1.6	2,016	235	34
	Mixed (Electric Power Sector)	19.73	95.52	11	1.6	1,885	217	32
	Mixed (Industrial Coking)	26.28	93.90	11	1.6	2,468	289	42
	Mixed (Industrial Sector)	22.35	94.67	11	1.6	2,116	246	36
	Coal Coke	24.80	113.67	11	1.6	2,819	273	40
Other Fuels - Solid								
	Municipal Solid Waste	9.95	90.70	32	4.2	902	318	42
	Petroleum Coke (Solid)	30.00	102.41	32	4.2	3,072	960	126
	Plastics	38.00	75.00	32	4.2	2,850	1,216	160
	Tires	28.00	85.97	32	4.2	2,407	896	118
Biomass Fuels - Solid								
	Agricultural Byproducts	8.25	118.17	32	4.2	975	264	35
	Peat	8.00	111.84	32	4.2	895	256	34
	Solid Byproducts	10.39	105.51	32	4.2	1,096	332	44
	Wood and Wood Residuals	17.48	93.80	7.2	3.6	1,640	126	63
		mmBtu per scf	$\mathrm{kg} \mathrm{cos}_{2}$ per mmBtu	$\mathrm{g} \mathrm{CH}_{4}$ per mmBtu	$\mathrm{g} \mathrm{N}_{2} \mathrm{O}$ per mmBtu	$\mathrm{kg} \mathrm{CO}_{2}$ per scf	$\mathrm{g} \mathrm{CH}_{4}$ per scf	$\mathrm{g} \mathrm{N} \mathbf{2} \mathrm{O}$ per scf
	Natural Gas							
	Natural Gas	0.001026	53.06	1.0	0.10	0.05444	0.00103	0.00010
Other Fuels - Gaseous								
	Blast Furnace Gas	0.000092	274.32	0.022	0.10	0.02524	0.000002	0.000009
	Coke Oven Gas	0.000599	46.85	0.48	0.10	0.02806	0.000288	0.000060
	Fuel Gas	0.001388	59.00	3.0	0.60	0.08189	0.004164	0.000833
	Propane Gas	0.002516	61.46	3.0	0.60	0.15463	0.007548	0.001510
	Biomass Fuels - Gaseous							
	Landfill Gas	0.000485	52.07	3.2	0.63	0.025254	0.001552	0.000306
	Other Biomass Gases	0.000655	52.07	3.2	0.63	0.034106	0.002096	0.000413
		mmBtu per gallon	$\mathrm{kg} \mathrm{CO}_{2}$ per mmBtu	$\mathrm{g} \mathrm{CH}_{4}$ per mmBtu	$\mathrm{g} \mathrm{N}_{2} \mathrm{O}$ per mmBtu	$\mathrm{kg} \mathrm{co}_{2}$ per gallon	$\mathrm{g} \mathrm{CH}_{4}$ per gallon	$\mathrm{g} \mathrm{N}_{2} \mathrm{O}$ per gallon
	Petroleum Products							
	Asphalt and Road Oil	0.158	75.36	3.0	0.60	11.91	0.47	0.09
	Aviation Gasoline	0.120	69.25	3.0	0.60	8.31	0.36	0.07
	Butane	0.103	64.77	3.0	0.60	6.67	0.31	0.06
	Butylene	0.105	68.72	3.0	0.60	7.22	0.32	0.06
	Crude Oil	0.138	74.54	3.0	0.60	10.29	0.41	0.08
	Distillate Fuel Oil No. 1	0.139	73.25	3.0	0.60	10.18	0.42	0.08
	Distillate Fuel Oil No. 2	0.138	73.96	3.0	0.60	10.21	0.41	0.08
	Distillate Fuel Oil No. 4	0.146	75.04	3.0	0.60	10.96	0.44	0.09
	Ethane	0.068	59.60	3.0	0.60	4.05	0.20	0.04
	Ethylene	0.058	65.96	3.0	0.60	3.83	0.17	0.03
	Heavy Gas Oils	0.148	74.92	3.0	0.60	11.09	0.44	0.09
	Isobutane	0.099	64.94	3.0	0.60	6.43	0.30	0.06
	Isobutylene	0.103	68.86	3.0	0.60	7.09	0.31	0.06
	Kerosene	0.135	75.20	3.0	0.60	10.15	0.41	0.08
	Kerosene-Type Jet Fuel	0.135	72.22	3.0	0.60	9.75	0.41	0.08
	Liquefied Petroleum Gases (LPG)	0.092	61.71	3.0	0.60	5.68	0.28	0.06
	Lubricants	0.144	74.27	3.0	0.60	10.69	0.43	0.09
	Motor Gasoline	0.125	70.22	3.0	0.60	8.78	0.38	0.08
	Naphtha (<401 deg F)	0.125	68.02	3.0	0.60	8.50	0.38	0.08
	Natural Gasoline	0.110	66.88	3.0	0.60	7.36	0.33	0.07
	Other Oil ($>401 \mathrm{deg}$ F)	0.139	76.22	3.0	0.60	10.59	0.42	0.08
	Pentanes Plus	0.110	70.02	3.0	0.60	7.70	0.33	0.07
	Petrochemical Feedstocks	0.125	71.02	3.0	0.60	8.88	0.38	0.08
	Petroleum Coke	0.143	102.41	3.0	0.60	14.64	0.43	0.09
	Propane	0.091	62.87	3.0	0.60	5.72	0.27	0.05
	Propylene	0.091	67.77	3.0	0.60	6.17	0.27	0.05
	Residual Fuel Oil No. 5	0.140	72.93	3.0	0.60	10.21	0.42	0.08
	Residual Fuel Oil No. 6	0.150	75.10	3.0	0.60	11.27	0.45	0.09
	Special Naphtha	0.125	72.34	3.0	0.60	9.04	0.38	0.08
	Unfinished Oils	0.139	74.54	3.0	0.60	10.36	0.42	0.08
	Used Oil	0.138	74.00	3.0	0.60	10.21	0.41	0.08
	Biomass Fuels - Liquid							
	Biodiesel (100%)	0.128	73.84	1.1	0.11	9.45	0.14	0.01
	Ethanol (100\%)	0.084	68.44	1.1	0.11	5.75	0.09	0.01
	Rendered Animal Fat	0.125	71.06	1.1	0.11	8.88	0.14	0.01
	Vegetable Oil	0.120	81.55	1.1	0.11	9.79	0.13	0.01
	Biomass Fuels - Kraft Pulping Liquor, by Wood Furnish							
	North American Softwood		94.4	1.9	0.42			
	North American Hardwood		93.7	1.9	0.42			
	Bagasse		95.5	1.9	0.42			
	Bamboo		93.7	1.9	0.42			
	Straw		95.1	1.9	0.42			

ederal Register EPA; 40 CFR Part 98; e-CFR, June 13, 2017 (see link below). Table C-1, Table C-2, Table AA-1

.

Table 2	Mobile Combustion CO_{2}		
	Fuel Type	$\mathrm{kg} \mathrm{CO}_{2}$ per unit	Unit
	Aviation Gasoline	8.31	gallon
	Biodiesel (100%)	9.45	gallon
	Compressed Natural Gas (CNG)	0.05444	scf
	Diesel Fuel	10.21	gallon
	Ethanol (100%)	5.75	gallon
	Kerosene-Type Jet Fuel	9.75	gallon
	Liquefied Natural Gas (LNG)	4.50	gallon
	Liquefied Petroleum Gases (LPG)	5.68	gallon
	Motor Gasoline	8.78	gallon
	Residual Fuel Oil	11.27	gallon

Source:
Federal Register EPA; 40 CFR Part 98; e-CFR, June 13, 2017 (see link below). Table C-1.

LNG: The factor was developed based on the CO_{2} factor for Natural Gas factor and LNG fuel density from GREET1_2017. $\mathbf{h l | l x \times \text { Model, Argonne National Laboratory. This represents a methodology change from previous versions. }}$
Table 3 Mobile Combustion CH_{4} and $\mathrm{N}_{2} \mathrm{O}$ for On-Road Gasoline Vehicles

Vehicle Type	Year	$\begin{gathered} \mathrm{CH}_{4} \text { Factor } \\ (\mathrm{g} / \text { mile }) \end{gathered}$	$\begin{gathered} \mathrm{N}_{2} \mathrm{O} \text { Factor } \\ (\mathrm{g} / \text { mile }) \end{gathered}$
Gasoline Passenger Cars	1973-74	0.1696	0.0197
	1975	0.1423	0.0443
	1976-77	0.1406	0.0458
	1978-79	0.1389	0.0473
	1980	0.1326	0.0499
	1981	0.0802	0.0626
	1982	0.0795	0.0627
	1983	0.0782	0.0630
	1984-93	0.0704	0.0647
	1994	0.0617	0.0603
	1995	0.0531	0.0560
	1996	0.0434	0.0503
	1997	0.0337	0.0446
	1998	0.0240	0.0389
	1999	0.0215	0.0355
	2000	0.0175	0.0304
	2001	0.0105	0.0212
	2002	0.0102	0.0207
	2003	0.0095	0.0181
	2004	0.0078	0.0085
	2005	0.0075	0.0067
	2006	0.0076	0.0075
	2007	0.0072	0.0052
	2008	0.0072	0.0049
	2009	0.0071	0.0046
	2010	0.0071	0.0046
	2011	0.0071	0.0046
	2012	0.0071	0.0046
	2013	0.0071	0.0046
	2014	0.0071	0.0046
	2015	0.0068	0.0042
	2016	0.0065	0.0038
	2017	0.0054	0.0018
	2018	0.0052	0.0016
Gasoline Light-Duty Trucks (Vans, Pickup Trucks, SUVs)	1973-74	0.1908	0.0218
	1975	0.1634	0.0513
	1976	0.1594	0.0555
	1977-78	0.1614	0.0534
	1979-80	0.1594	0.0555
	1981	0.1479	0.0660
	1982	0.1442	0.0681
	1983	0.1368	0.0722
	1984	0.1294	0.0764
	1985	0.1220	0.0806
	1986	0.1146	0.0848
	1987-93	0.0813	0.1035
	1994	0.0646	0.0982
	1995	0.0517	0.0908
	1996	0.0452	0.0871
	1997	0.0452	0.0871
	1998	0.0412	0.0787
	1999	0.0333	0.0618
	2000	0.0340	0.0631
	2001	0.0221	0.0379
	2002	0.0242 0.0221	0.0424
	2003	0.0221	0.0373
	2005	0.0105	0.0064
	2006	0.0108	0.0080
	2007	0.0103	0.0061
	2008	0.0095	0.0036
	2009	0.0095	0.0036
	2010	0.0095	0.0035
	2011	0.0096	0.0034
	2012	0.0096	0.0033
	2013	0.0095 0.0095	0.0035
	2015	0.0094	0.0031
	2016	0.0091	0.0029
	2017	0.0084	0.0018
	2018	0.0081	0.0015
Gasoline Heavy-Duty Vehicles	<1981	0.4604	0.0497
	1982-84	0.4492	0.0538
	1985-86	0.4090	0.0515
	1987	0.3675	0.0849
	$1988-1989$ $1990-1995$	0.3492	0.0933
	1990-1995	0.3246 0.1278	0.1142
	1997	0.0924	0.1726
	1998	0.0655	0.1750
	1999	0.0648	0.1724
	2000	0.0630	0.1660
	2001	0.0577	0.1468
	2002	0.0634	0.1673
	2003	0.0602	0.1553
	2004	0.0298	0.0164
	2005	0.0297 0.0299	$\frac{0.0083}{0.0241}$
	2007	0.0322	0.0015
	2008	0.0340	0.0015
	2009	0.0339	0.0015
	2010	0.0320	0.0015
	2011	0.0304	0.0015
	2012	0.0313	0.0015
	2013	0.0313	0.0015
	$\frac{2014}{2015}$	0.0315	0.0015
	2016	0.0321	0.0061
	2017	0.0329	0.0084
	2018	0.0326	0.0082
Gasoline Motorcycles	-1960-1995	0.0899	0.0087
		0.0672	0.0069

Table 4	Mobile Combustion CH_{4} and $\mathrm{N}_{2} \mathrm{O}$ for On-Road Diesel and Alternative Fuel Vehicles

Vehicle Type	Fuel Type	Vehicle Year	$\begin{gathered} \mathrm{CH}_{4} \text { Factor } \\ (\mathrm{g} / \text { mile }) \end{gathered}$	$\mathrm{N}_{2} \mathrm{O}$ Factor (g / mile)
Passenger Cars	Diesel	1960-1982	0.0006	0.0012
		1983-1995	0.0005	0.0010
		1996-2006	0.0005	0.0010
		2007-2018	0.0302	0.0192
Light-Duty Trucks	Diesel	1960-1982	0.0011	0.0017
		1983-1995	0.0009	0.0014
		1996-2006	0.0010	0.0015
		2007-2018	0.0290	0.0214
Medium- and Heavy-Duty Vehicles	Diesel	1960-2006	0.0051	0.0048
		2007-2018	0.0095	0.0431
Light-Duty Cars	Methanol		0.0080	0.0060
	Ethanol		0.0080	0.0060
	CNG		0.0820	0.0060
	LPG		0.0080	0.0060
	Biodiesel		0.0300	0.0190
Light-Duty Trucks	Ethanol		0.0120	0.0110
	CNG		0.1230	0.0110
	LPG		0.0120	0.0130
	LNG		0.1230	0.0110
	Biodiesel		0.0290	0.0210
Medium-Duty Trucks	CNG		4.2000	0.0010
	LPG		0.0140	0.0340
	LNG		4.2000	0.0430
	Biodiesel		0.0090	0.0010
Heavy-Duty Trucks	Methanol		0.0750	0.0280
	Ethanol		0.0750	0.0280
	CNG		3.7000	0.0010
	LPG		0.0130	0.0260
	LNG		3.7000	0.0010
	Biodiesel		0.0090	0.0430
Buses	Methanol		0.0220	0.0320
	Ethanol		0.0220	0.0320
	CNG		10.0000	0.0010
	LPG		0.0340	0.0170
	LNG		10.0000	0.0010
	Biodiesel		0.0090	0.0430

Table 5 Mobile Combustion CH_{4} and $\mathrm{N}_{2} \mathrm{O}$ for Non-Road Vehicles

Vehicle Type	Fuel Type	$\begin{aligned} & \mathrm{CH}_{4} \text { Factor } \\ & (\mathrm{g} / \mathrm{gallon}) \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \mathrm{N}_{2} \mathrm{O} \text { Factor } \\ (\mathrm{g} / \text { gallon }) \end{array} \\ & \hline \end{aligned}$
Ships and Boats	Residual Fuel Oil	0.55	0.55
	Gasoline (2 stroke)	9.54	0.06
	Gasoline (4 stroke)	4.88	0.23
	Diesel	0.31	0.50
Locomotives	Diesel	0.80	0.26
Aircraft	Jet Fuel	0	0.30
	Aviation Gasoline	7.06	0.11
Agricultural Equipment ${ }^{\text {A }}$	Gasoline (2 stroke)	12.96	0.06
	Gasoline (4 stroke)	7.24	0.21
	Diesel	0.28	0.49
	LPG	2.19	0.39
Agricultural Offroad Trucks	Gasoline	7.24	0.21
	Diesel	0.13	0.49
Construction/Mining Equipment ${ }^{\text {B }}$	Gasoline (2 stroke)	12.42	0.07
	Gasoline (4 stroke)	5.58	0.20
	Diesel	0.20	0.47
	LPG	1.05	0.41
Construction/Mining Offroad Trucks	Gasoline	5.58	0.20
	Diesel	0.13	0.49
Lawn and Garden Equipment	Gasoline (2 stroke)	15.57	0.06
	Gasoline (4 stroke)	5.84	0.18
	Diesel	0.33	0.47
	LPG	0.35	0.41
Airport Equipment	Gasoline	2.58	0.25
	Diesel	0.17	0.49
	LPG	0.33	0.41
Industria/Commercial Equipment	Gasoline (2 stroke)	15.14	0.06
	Gasoline (4 stroke)	5.48	0.20
	Diesel	0.23	0.47
	LPG	0.44	0.41
Logging Equipment	Gasoline (2 stroke)	12.03	0.08
	Gasoline (4 stroke)	6.71	0.18
	Diesel	0.10	0.49
Railroad Equipment	Gasoline	5.78	0.19
	Diesel	0.44	0.42
	LPG	1.20	0.41
Recreational Equipment	Gasoline (2 stroke)	7.81	0.03
	Gasoline (4 stroke)	8.45	0.19
	Diesel	0.41	0.41
	LPG	2.98	0.38

A otes
ipment, such as tractors and combines, as well as fuel consumption from trucks that are used off-road in agricultur
${ }^{5}$ Includes equipment, such as cranes, dumpers, and excavators, as well as fuel consumption from trucks that are used off-road in construction.

Table 7 Steam and Heat

	CO_{2} Factor $(\mathrm{kg} / \mathrm{mmBtu})$	CH_{4} Factor $(\mathrm{g} / \mathrm{mmBtu})$	$\mathrm{N}_{2} \mathrm{O}$ Factor $(\mathrm{g} / \mathrm{mmBtu})$
Steam and Heat	66.33		0.250
Note: Emission factors are per mmBtu of steam or heat purchased. These factors assume natural gas fuel is used to generate steam or heat at 80 percent thermal efficiency.			

Scope 3 Emission Factors

Scope 3 emission faccrid
Scope 3 Category 4: Upstream Transportation and Distribution and Category 9: Downstream Transportation and Distribution

Vehicle Type	$\begin{aligned} & \hline \mathrm{CO}_{2} \text { Factor } \\ & (\mathrm{kg} / \text { unit) }) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{CH}_{4} \text { Factor } \\ \text { (g/ unit) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}_{2} \mathrm{O} \text { Factor } \\ (\mathrm{g} / \text { unit) }) \\ \hline \end{gathered}$	Units
Medium- and Heavy-Duty Truck	1.387	0.013	0.033	vehicle-mile
Passenger $\mathrm{Car}^{\text {A }}$	0.335	0.009	0.008	vehicle-mile
Light-Duty Truck ${ }^{\text {8 }}$	0.461	0.012	0.010	vehicle-mile
Medium- and Heavy-Duty Truck	0.207	0.0020	0.0046	ton-mile
Rail	0.021	0.0017	0.0005	ton-mile
Waterborne Craft ${ }^{\text {c }}$	0.040	0.0122	0.0017	ton-mile
Aircraft	1.265	0	0.0389	ton-mile

Source:
CO_{2}, CH_{4}, and $\mathrm{N}_{2} \mathrm{O}$ emissions data for road vehicles are from Table 2-13 of the U.S. Greenhouse Gas Emissions and Sinks: 1990-2018 (Feb. 2020).

-2018, which are distributed into $\mathrm{CO}_{2}, \mathrm{CH}_{4}$, and $\mathrm{N}_{2} \mathrm{O}$ emissions based on fuelvehicle emission factors.
Freight ton-mile data for non-road vehicles are from Table 1 -50 of the Bureau of Transportation Statistics, National Transportation Statistics for 2019 (Data based on 2017).
Notes:

Passenger car: includes passenger cars, minivans, SUVs, and small pickup trucks (vehicles with wheelbase less than 121 inches).
Light-duty truck: includes full-size pickup trucks, full-size vans, and extended-length SUVs (vehicles with wheelbase greater than 121 inches).
${ }^{\circ}$ Waterborne Craft: updates due to a methodology change.

Table 9 Scope 3 Category 5: Waste Generated in Operations and Category 12: End-of-Life Treatment of Sold Products

Tw Table These factors are intended for use in the waste-type-specific method or the average-data method defined in the Scope 3 Calculation Guidance for category 5 and category 12 . Choose the appropriate material and disposal method from the table below. For the average-data method, use one of the mixed material types, such as mixed MSW.

Material	Metric Tons $\mathrm{CO}_{2} \mathrm{e}$ / Short Ton Material					
	Recycled ${ }^{\text {A }}$	Landfilled ${ }^{\text {B }}$	Combusted ${ }^{\text {c }}$	Composted ${ }^{\text {D }}$	Anaerobically Digested (Dry Digestate with Curing)	Anaerobically Digested (Wet Digestate with Curing)
Aluminum Cans	0.06	0.02	0.01	NA	NA	NA
Aluminum Ingot	0.04	0.02	0.01	NA	NA	NA
Steel Cans	0.32	0.02	0.01	NA	NA	NA
Copper Wire	0.18	0.02	0.01	NA	NA	NA
Glass	0.05	0.02	0.01	NA	NA	NA
HDPE	0.21	0.02	2.80	NA	NA	NA
LDPE	NA	0.02	2.80	NA	NA	NA
PET	0.23	0.02	2.05	NA	NA	NA
LLDPE	NA	0.02	2.80	NA	NA	NA
PP	NA	0.02	2.80	NA	NA	NA
PS	NA	0.02	3.02	NA	NA	NA
PVC	NA	0.02	1.26	NA	NA	NA
PLA	NA	0.02	0.01	0.09	NA	NA
Corrugated Containers	0.11	1.07	0.05	NA	NA	NA
Magazines/Third-class mail	0.02	0.50	0.05	NA	NA	NA
Newspaper	0.02	0.42	0.05	NA	NA	NA
Office Paper	0.02	1.52	0.05	NA	NA	NA
Phonebooks	0.04	0.42	0.05	NA	NA	NA
Textbooks	0.04	1.52	0.05	NA	NA	NA
Dimensional Lumber	0.09	0.08	0.05	NA	NA	NA
Medium-density Fiberboard	0.15	0.04	0.05	NA	NA	NA
Food Waste (non-meat)	NA	0.68	0.05	0.07	0.14	0.11
Food Waste (meat only)	NA	0.68	0.05	NA	0.14	0.11
Beef	NA	0.68	0.05	0.07	0.14	0.11
Poultry	NA	0.68	0.05	0.07	0.14	0.11
Grains	NA	0.68	0.05	0.07	0.14	0.11
Bread	NA	0.68	0.05	0.07	0.14	0.11
Fruits and Vegetables	NA	0.68	0.05	0.07	0.14	0.11
Dairy Products	NA	0.68	0.05	0.07	0.14	0.11
Yard Trimmings	NA	0.38	0.05	0.09	0.11	NA
Grass	NA	0.29	0.05	0.09	0.09	NA
Leaves	NA	0.30	0.05	0.09	0.13	NA
Branches	NA	0.62	0.05	0.09	0.16	NA
Mixed Paper (general)	0.07	0.95	0.05	NA	NA	NA
Mixed Paper (primarily residential)	0.07	0.92	0.05	NA	NA	NA
Mixed Paper (primarily from offices)	0.03	0.90	0.05	NA	NA	NA
Mixed Metals	0.23	0.02	0.01	NA	NA	NA
Mixed Plastics	0.22	0.02	2.34	NA	NA	NA
Mixed Recyclables	0.09	0.81	0.11	NA	NA	NA
Food Waste	NA	0.68	0.05	0.07	NA	NA
Mixed Organics	NA	0.55	0.05	0.09	NA	NA
Mixed MSW (municipal solid waste)	NA	0.63	0.43	NA	NA	NA
Carpet	NA	0.02	1.68	NA	NA	NA
Desktop CPUs	NA	0.02	0.40	NA	NA	NA
Portable Electronic Devices	NA	0.02	0.89	NA	NA	NA
Flat-panel Displays	NA	0.02	0.74	NA	NA	NA
CRT Displays	NA	0.02	0.64	NA	NA	NA
Electronic Peripherals	NA	0.02	2.23	NA	NA	NA
Hard-copy Devices	NA	0.02	1.92	NA	NA	NA
Mixed Electronics	NA	0.02	0.87	NA	NA	NA
Clay Bricks	NA	0.02	NA	NA	NA	NA
Concrete	0.01	0.02	NA	NA	NA	NA
Fly Ash	0.01	0.02	NA	NA	NA	NA
Tires	0.10	0.02	2.21	NA	NA	NA
Asphalt Concrete	0.004	0.02	NA	NA	NA	NA
Asphalt Shingles	0.03	0.02	0.70	NA	NA	NA
Drywall	NA	0.02	NA	NA	NA	NA
Fiberglass Insulation	0.05	0.02	NA	NA	NA	NA
Vinyl Flooring	NA	0.02	0.29	NA	NA	NA
Wood Flooring	NA	0.18	0.08	NA	NA	N

Source: EPA, Office of Resource Conservation and Recovery (February 2016) Documentation for Greenhouse Gas Emission and Energy Factors used in the Waste Reduction Model (WARM). Factors from tables provided in the Management Pracitices Chapters and
Background Chapters. WARM Version 15. Additional data provided by EPA, WARM-15 Background Data
Notes: These factors do not include any avoided emissions impact from any of the disposal methods. All the factors presented here include transportation emissions, which are optional in the Scope 3 Calculation Guidance, with an assumed average distance traveled to the
${ }^{A}$ Recycling emissions include transport to recycling facility and sorting of recycled materials at material recovery facility
Landfilling emissions include transport to landfill, equipment use at landfill and fugitive landfill CH_{4} emissions. Landilill CH_{4} is based on typical landfill gas collection practices and average landfill moisture conditions.
Combustion emissions include transport to combustion facility and combustion-related non-biogenic CO_{2} and $\mathrm{N}_{2} \mathrm{O}$
${ }^{\circ}$ Composting emissions include transport to composting facility, equipment use at composting facility and CH_{4} and $\mathrm{N}_{2} \mathrm{O}$ emissions during composting.
Table 10 Scope 3 Category 6: Business Travel and Category 7: Employee Commuting
These factors are intended for use in the distance-based method defined in the Scope 3 Calculation Guidance. If fuel data are available, then the fuel-based method should be used, with factors from Tables 2 through 5 .

Vehicle Type	$\begin{aligned} & \hline \mathrm{CO}_{2} \text { Factor } \\ & \text { (kg / unit) } \end{aligned}$	$\begin{gathered} \mathrm{CH}_{4} \text { Factor } \\ (\mathrm{g} / \text { unit }) \end{gathered}$	$\begin{gathered} \hline \mathrm{N}_{2} \mathrm{O} \text { Factor } \\ \text { (} \mathrm{g} / \text { unit) } \end{gathered}$	Units
Passenger Car ${ }^{\text {A }}$	0.335	0.009	0.008	vehicle-mile
Light-Duty Truck ${ }^{\text {B }}$	0.461	0.012	0.010	vehicle-mile
Motorcycle	0.184	0.070	0.007	vehicle-mile
Intercity Rail - Northeast Corridor ${ }^{\text {c }}$	0.058	0.0055	0.0007	passenger-mile
Intercity Rail - Other Routes ${ }^{\text {c }}$	0.150	0.0117	0.0038	passenger-mile
Intercity Rail - National Average ${ }^{\text {c }}$	0.113	0.0092	0.0026	passenger-mile
Commuter Rail ${ }^{\text {D }}$	0.148	0.0123	0.0030	passenger-mile
Transit Rail (i.e. Subway, Tram) ${ }^{\text {E }}$	0.099	0.0089	0.0013	passenger-mile
Bus	0.053	0.0206	0.0009	passenger-mile
Air Travel - Short Haul (<300 miles)	0.215	0.0077	0.0068	passenger-mile
Air Travel - Medium Haul (>= 300 miles, < 2300 miles)	0.133	0.0006	0.0042	passenger-mile
Air Travel - Long Haul (>=2300 miles)	0.165	0.0006	0.0052	passenger-mile

O_{2}, CH_{4}, and $\mathrm{N}_{2} \mathrm{O}$ emissions data for highway vehicles are from Table 2-13 of the EPA (2020) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2018
Vehicle-miles and passenger-miles data for highway vehicles are from Table VM-1 of the Federal Highway Administration Highway Statistics 2018 .
uel consumption data and passenger-miles data for rail are from Tables A. 14 to A. 16 and C. 9 to C .11 of the Transportation Energy Data Book: Edition 38 . Fuel consumption was converted to emissions by using fuel and electricity emission factors presented in the tables
Intercity Rail factors from personal communication with Amtrak (Laura Fotiou), March 2020
Air Travel factors from 2019 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting. Version 1.0 August 2019.
Notes

Intercity rail: Amtrak long-distance rail between major cities. Northeast Corridor extends from Boston to Washington D.C. Other Routes are all routes outside the Northeast Corridor.
Transit rail: rail typically within an urban center, such as subways, elevated railways, metropolitan railways (metro), streetcars, trolley cars, and tramways.

Table 11 Global Warming Potentials (GWPs)

Gas	100-Year GWP
CO_{2}	1
CH_{4}	25
$\mathrm{N}_{2} \mathrm{O}$	298
HFC-23	14,800
HFC-32	675
HFC-41	92
HFC-125	3,500
HFC-134	1,100
HFC-134a	1,430
HFC-143	353
HFC-143a	4,470
HFC-152	53
HFC-152a	124
HFC-161	12
HFC-227ea	3,220
HFC-236cb	1,340
HFC-236ea	1,370
HFC-236fa	9,810
HFC-245ca	693
HFC-245fa	1,030
HFC-365mic	794
HFC-43-10mee	1,640
SF_{6}	22,800
NF_{3}	17,200
CF_{4}	7,390
$\mathrm{C}_{2} \mathrm{~F}_{6}$	12,200
$\mathrm{C}_{3} \mathrm{~F}_{8}$	8,830
${ }^{\text {c- }-\mathrm{C}_{4} \mathrm{~F}_{8}}$	10,300
$\mathrm{C}_{4} \mathrm{~F}_{10}$	8,860
$\mathrm{C}_{5} \mathrm{~F}_{12}$	9,160
$\mathrm{C}_{6} \mathrm{~F}_{14}$	9,300
$\mathrm{C}_{10} \mathrm{~F}_{18}$	>7,500

100 -year GWPs from IPCC Fourth Assessment Report (AR4), 2007. IPCC AR4 was published in 2007 and is among the most current and comprehensive peer-reviewed assessments of climate change. AR4 provides revised GWPs of several GHGS relative to the values

While EPA recognizes that Fifth Assessment Report (AR5) GWPs have been pubbished, in an effort to ensure consistency and comparability of GHG data between EPA's voluntary and non-voluntary GHG reporting programs (e.g. GHG Reporting Program and National SAR GWP values. Utilizing AR4 GWPS improves EPA's ability to analyze corporate, national, and sub-national GHG data consistently, enhances communication of GHG information between programs, and gives outside stakenolders a consistent, predictable set of GWPs to avoid confusion and additional burden.

Table 12 Global Warming Potentials (GWPs) for Blended Refrigerants

ASHRAE\#	100-year GWP	Blend Composition
R-401A	16	53\% HCFC-22, 34\% HCFC-124, 13\% HFC-152a
R-401B	14	61\% HCFC-22, 28\% HCFC-124, 11\% HFC-152a
R-401C	19	33\% HCFC-22, 52\% HCFC-124, 15\% HFC-152a
R-402A	2,100	38\% HCFC-22, 6\% HFC-125, 2\% propane
R-402B	1,330	6\% HCFC-22, 38\% HFC-125, 2\% propane
R-403B	3,444	56\% HCFC-22, 39\% PFC-218, 5\% propane
R-404A	3,922	44\% HFC-125, 4\% HFC-134a, 52\% HFC 143a
R-406A	0	55\% HCFC-22, 41\% HCFC-142b, 4\% isobutane
- -407 A	2,107	20\% HFC-32, 40\% HFC-125, 40\% HFC-134a
R-407B	2,804	10\% HFC-32, 70\% HFC-125, 20\% HFC-134a
R-407C	1,774	23\% HFC-32, 25\% HFC-125, 52\% HFC-134a
8-407D	1,627	15\% HFC-32, 15\% HFC-125, 70\% HFC-134a
R-407E	1,552	25\% HFC-32, 15\% HFC-125, 60\% HFC-134a
R-408A	2,301	47\% HCFC-22, 7\% HFC-125, 46\% HFC 143a
R-409A	0	60\% HCFC-22, 25\% HCFC-124, 15\% HCFC-142b
8-410A	2,088	50\% HFC-32, 50% HFC-125
R-410B	2,229	45\% HFC-32, 55\% HFC-125
R-411A	14	87.5\% HCFC-22, 11 HFC-152a, 1.5\% propylene
R-411B	4	94\% HCFC-22, 3\% HFC-152a, 3\% propylene
R-413A	2,053	88\% HFC-134a, 9\% PFC-218, 3\% isobutane
R-414A	0	51\% HCFC-22, 28.5\% HCFC-124, 16.5\% HCFC-142b
R-414B	0	5\% HCFC-22 , 39\% HCFC-124, 9.5\% HCFC-142b
R-417A	2,346	46.6\% HFC-125,5\% HFC-134a, 3.4\% butane
R-422A	3,143	85.1\% HFC-125, 11.5\% HFC-134a, 3.4\% isobutane
R-422D	2,729	65.1\% HFC-125, 31.5\% HFC-134a, 3.4\% isobutane
R-423A	2,280	47.5\% HFC-227ea, 52.5\% HFC-134a,
R-424A	2,440	50.5\% HFC-125, 47\% HFC-134a, 2.5\% butane/pentane
R-426A	1,508	5.1% HFC-125, 93\% HFC-134a, 1.9% butane/pentane
R-428A	3,607	77.5\% HFC-125, 2\% HFC-143a, , 1.9\% isobutane
R-434A	3,245	63.2\% HFC-125, 16\% HFC-134a, 18\% HFC-143a, 2.8\% isobutane
R-500	32	73.8\% CFC-12, 26.2\% HFC-152a, 48.8\% HCFC-22
R-502	0	48.8\% HCFC-22, 51.2\% CFC-115
R-504	325	48.2\% HFC-32, 51.8\% CFC-115
R-507	3,985	5\% HFC-125, 5\% HFC143a
R-508A	13,214	39\% HFC-23, 61\% PFC-116
R-508B	13,396	46\% HFC-23, 54\% PFC-116

00-year GW Irom IPCC Fourth Assess (AR4), 2007. See the source note to Table 11 for further explanation. GWPs of blended refrigerants are based on their HFC and PFC constituents, which are based on data from p//ww .apa

